
Computational Linguistics 1 - Fall 2011
CMSC/LING723, LBSC 744
Homework 1 - Due 20 Sept
Submit your responses and solutions to: compling723.fall2011@gmail.com
Homework write-ups may be in either plain text or .pdf format. Be sure include your full name,
e-mail, and any code you write in your submission, and clearly indicate each problem number in
your solution set.

There are two problems for this homework; Problem 1 is worth 10 points, and Problem 2 is worth
15 points.

Note that there are a lot of files for this homework; each is linked from this pdf file, but they can
also all be found at:
http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/

Problem 1: Soundex (10 points)

The Soundex algorithm is a phonetic algorithm commonly used by libraries and the Census Bureau
to represent peoples names as they are pronounced in English. It has the advantage that name
variations with minor spelling differences will map to the same representation, as long as they have
the same pronunciation in English. Here is how the algorithm works:

1. Keep the first letter of the name. This may be uppercased or lowercased.

2. Remove all non-initial occurrences of the following letters: a, e, h, i, o, u, w, y. (i.e.,
remove all occurrences of the given characters except when they occur in the first position.)

3. Replace the remaining letters (except the first) with numbers:

• /bfpv/1/ (replace b, f, p, or v with the number 1)

• /cgjkqsxz/2/

• /dt/3/

• /l/4/

• /mn/5/

• /r/6/

If two or more letters from the same number group were adjacent in the original name, then
only replace the first of those letters with the corresponding number and ignore the others.

4. If there are more than 3 digits in the resulting output, then drop the extra ones.

5. If there are fewer than 3 digits, then pad at the end with the required number of trailing
zeros.

The final output of applying the Soundex algorithm to any input string should be of the form Letter

Digit Digit Digit. Table 1 shows the output of the Soundex algorithm for some example names.

1

http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/


Input Output

Jurafsky J612
Jarovski J612
Resnik R252
Reznick R252
Euler E460
Peterson P362

Table 1: Example outputs for the Soundex algorithm.

See how the first two pairs of names, which are spelled differently but pronounced the same, are
mapped to the same output by the Soundex algorithm?

Now, for the homework, code an FST that implements the Soundex algorithm. Note that it
would be non-trivial to implement a single FST for the entire algorithm and therefore, the strategy
we suggest you adopt is a bottom-up one: implement multiple transducers, each performing a
simpler task, and then compose them together to get the final output. One possibility is to partition
the algorithm across three transducers:

1. Transducer 1: Performs steps 1-3 of the algorithm, i.e, retaining the first letter, removing
letters and replacing letters with numbers.

2. Transducer 2: Performs step 4 of the algorithm, i.e., truncating extra digits.

3. Transducer 3: Performs step 5 of the algorithm, i.e., padding with zeros as required.

Write code that takes a list of names on input, and uses a series of transducers (such as Transducers
1-3 suggested above) to output the Soundex representation of the name. Note that you must
implement a composition of transducers in your code for this assignment, though you may choose
to break down the problem in different ways and thus implement different transducers than those
suggested above.1

Turn in your code, and its output given names.txt (provided on the course webpage) as input.
How many unique Soundex outputs are there for our list of names?

Note that you may write your code in any language,2 but be sure that we can run it—we will be
testing it on new names to be sure it works.

1Yes, there is code to implement the Soundex algorithm available on the web. No, that code is probably not
implementing transducers, and no, obviously you should not try to turn that code in as your own. You may,
however, use the online implementations to verify your code; you can also verify your code against the names in
Table 1.

2If you choose to write your code using the NLTK toolkit, then you might want to check out Jimmy Lin’s tutorial
on FSTs in NLTK. You may also choose to use the OpenFST library.

2

http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/names.txt
http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/NLTK-FST.tgz
http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/NLTK-FST.tgz
http://www.openfst.org/twiki/bin/view/FST/WebHome


Problem 2: Pronunciation-Lexicon Dictionary (15 points)

Download the PronLex dictionary from the course webpage. Take a look at a few of the entries in
this file: the first column represents full words, the second of the tab-delimited columns represents
a pronunciation of that word using the ARPA phonetic alphabet, and the final column defines
various functions of the word.

Look up the entry for “almond”. Why are there 3 entries for this word? Find another word with
multiple pronunciations.

Look up the entries for “bare” and “bear”. What do you notice about the pronunciation entries?
Find another pair of words with identical pronunciations and different spellings. Test these words
in your Soundex code from Problem 1—does it predict identical pronunciations too?

Create an FST out of the PronLex dictionary, with words as input and phonetic pronun-
ciation sequences as output on the transducer. You should be able to re-use the transducer data
structure that you constructed for Problem 1 of this homework.3 Note that for Problem 1, you
probably defined all the arcs and states in your FSTs by hand; now you need to write code to do
so automatically, from the PronLex dictionary file.

Now compose your PronLex FST with the sequence
“the quick brown fox jumps over the lazy dog”
(i.e., create an automata from the given sentence, such that “the” is the label on the transition
arc from state 1 to 2, “quick” is the label from state 2 to 3, etc., then compose that automata
with your PronLex FST). The result should be an FST, with our sentence on the input side of the
transitions, and the phonetic pronunciation of our sentence on the output. Is the FST deterministic,
or non-deterministic? (Actually, you can answer the non-determinism question without writing
any code...) According to this dictionary, how would this sentence be pronounced, i.e., what is its
phonetic sequence?

3If you chose to solve Problem 1 using OpenFST, then you may want to look at the pronlex2fst.pl script on the
course webpage, which can be used along with the fstcompose function to create an OpenFST object.

3

http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/pronlex_arpabet.txt.gz
http://www.umiacs.umd.edu/~hollingk/classes/hw1.CL1-f11/pronlex2fst.pl

