Computational Linguistics 1 CMSC/LING 723, LBSC 744

NUVERSITY 18 VARYLANO Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland 1 September 2011

Agenda

- Administrivia
- Introduction to Computational Linguistics & applications
- Rule-based & statistical NLP

Administrivia

- Course webpage:
- www.umiacs.umd.edu/~hollingk/classes/CompLing1-f11.html
- Course mailing list: umd-cmsc723-fall-2011@googlegroups.com
- Textbook
- <u>Speech and Language Processing</u>, Daniel Jurafsky and James H. Martin
- Teaching Assistant: Alex Ecins
- Office hours

Computational Linguistics 1

Course Policies

Policies

Computational Linguistics 1

- Attendance
- Homework
 - Submitted by e-mail to: compling723.fall2011@gmail.com

Introduction to Computational Linguistics & applications

- Computer access?
 Late/incomplete work
- Exams
- Grading
- Exams
- Homeworks
- · In-class participation
- Readings

mputational Linguistics 1

Agenda

Administrivia

Pre-requisites

- Must have strong computational background
- Be a competent programmer
 - · Depth-first search
 - Programming language: recommend Python/NLTK
- Be interested in linguistics
- "The aged bottle flies fast"
- Enrollment/waitlist
- Machine Learning students?

Computational Linguistics 1

• Rule-based & statistical NLP

What is Computational Linguistics?

- Computer processing of naturally-occurring language
 What humans do when processing language
- (vs) What linguists do when processing language
- Various names
- Computational linguistics
- Natural language processing (NLP)
- Speech/language/text processing
- Human language technology
- Interdisciplinary field
- Roots in linguistics and computer science (specifically, AI)
- Influenced by electrical engineering, cognitive science, psychology, and other fields
- Dominated today by machine learning and statistics

Computational Linguistics 1

Applications

- Speech recognition and synthesis
- Lots of signal processing to go from raw waveforms into text (and vice versa)

Applications

- Speech recognition and synthesis
 Lots of signal processing to go from raw waveforms into text
 (and vice versa)
- Optical Character Recognition (OCR)
 Image processing. e.g., captchas

	Aire	dalat	nex	
	rate	dime	sonated	
	diaom	unbahar	aphaleci	
	Point	aide	umedau	
		humment	7111205	
nputational Linguistics 1	uerono	antightero	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Applications

- Speech recognition and synthesis
- Lots of signal processing to go from raw waveforms into text
 (and vice versa)
- Optical Character Recognition (OCR)
 Image processing. e.g., captchas
- Parsing: syntax & semantics
- "The aged bottle flies fast"

 $[{}_{\rm S}\,[{}_{\rm NP}\,I\,]\,[{}_{\rm VP}\,saw\,[{}_{\rm NP}\,the\,man]\,]\,]$

Computational Linguistics 1

Semantics

- · Different structures, same* meaning: · I saw the man.
- · The man was seen by me.
- · The man was who I saw.
- ...
- · Semantic representations attempt to abstract "meaning" First-order predicate logic:
 J x, MAN(x) ^ SEE(x, I) ^ TENSE(past)
- · Semantic frames and roles: (PREDICATE = see, EXPERIENCER = I, PATIENT = man)

Computational Linguistics 1

Lexical Semantics

- · Any verb can add "able" to form an adjective.
- · I taught the class. The class is teachable.
- · I loved that bear. The bear is loveable.
- · I rejected the idea. The idea is rejectable.
- Association of words with specific semantic forms · John: noun, masculine, proper
- the boys: noun, masculine, plural, human
- · load/smear verbs: specific restrictions on subjects and objects

Computational Linguistics 1

Applications

- · Speech recognition and synthesis
- · Lots of signal processing to go from raw waveforms into text (and vice versa)
- Optical Character Recognition (OCR) · Image processing. e.g., captchas
- Parsing: syntax & semantics
- "The aged bottle flies fast"
- Machine translation
- "Maria no daba una bofetada a la bruja verde"
- Information extraction (Watson)
- Automatic essay grading
- · Spell checking, grammar checking

Computational Linguistics 1

Why is NLP hard?

- · We do it all the time, practically without thinking about it!
- Garbled input
- · Noisy waveforms input to speech recognition
- · Distorted images for OCR
- "Cascaded" errors
- · Cascades in NLP
- Ambiguity

utational Linguistics 1

At the word level

Homophones

- · "It's hard to wreck a nice beach"
- · Part of speech
- Duck! [VB Duck]!
 Duck is delicious for dinner.

Word sense

- I went to the bank to deposit my check.
- · I went to the bank of the river to fish
- · I went to the bank of windows and chose the one for "complaints".

Computational Linguistics 1

What's a word?

- · Break up by spaces, right? Ebay | Sells | Most | of | Skype | to | Private | Investors Swine | flu | isn't | something | to | be | feared
- What about these? 达赖**喇嘛在高雄为灾民祈福**

ليبيا تحيى ذكرى وصول القذافي إلى السلطة 百貨店、8月も不振大手5社の売り上げ8~11%減 टाटा ने कहा, घाटा पूरा करो

• (What's a sentence ... ?)

At the syntactic level

- PP Attachment ambiguity
- · I saw the man on the hill with the telescope Structural ambiguity
- · I cooked her duck.
- · Visiting relatives can be annoying.
- · Time flies like an arrow.

Pragmatics and World Knowledge

- · Interpretation of sentences requires context, world knowledge, speaker intention/goals, etc.
- Example 1:
- Could you turn in your assignments now? (command)
- · Could you finish the assignment? (question, command)
- · Example 2:

omputational Linguistics 1

- I couldn't decide how to catch the thief. Then I decided to spy on the thief with binoculars.
- · To my surprise, I found out he had them too. Then I knew to just follow the thief with binoculars [the thief [with binoculars]] vs. [the thief] [with binoculars]

Computational Linguistics 1

· Requires world knowledge:

Difficult cases...

- · The city council denied the demonstrators the permit because they advocated violence
- · The city council denied the demonstrators the permit because they feared violence
- · Requires context:

Computational Linguistics

· John hit the man. He had stolen his bicycle.

Agenda

Administrivia

tational Linguistics

- Introduction to Computational Linguistics & applications
- Rule-based & statistical NLP

Application Goals

- Science vs Engineering
- · Understanding the phenomenon of human language · Building better applications
- Accurate; minimize errors (false positives/negatives)
- Maximize coverage
- · Robust, degrades gracefully
- · Fast, scalable

Computational Linguistics 1

Rule-Based Approaches

- · Prevalent through the 80's
- · Rationalism as the dominant approach
- · Manually-encoded rules for various aspects of NLP • E.g., swallow is a verb of ingestion, taking an animate subject and a physical object that is edible, ...

What's the problem?

- Rule engineering is time-consuming and error-prone
 Natural language is full of exceptions
- Rule engineering requires knowledge
 Is this a bad thing?
- Rule engineering is expensive
- Experts cost a lot of money
- Coverage is limited
- · Knowledge often limited to specific domains

Computational Linguistics 1

More problems...

- Systems became overly complex and difficult to debug
 Unexpected interaction between rules
- Systems were brittle
- Often broke on unexpected input (e.g., "The machine swallowed my change." or "She swallowed my story.")
- Systems were uninformed by prevalence of phenomena
 Why WordNet thinks congress is a donkey...

Problem isn't with rule-based approaches per se, it's with manual knowledge engineering...

The alternative?

- Empirical approach:
- learn by observing language as it's used, "in the wild"
- Many different names:
- Statistical NLP
- Data-driven NLPEmpirical NLP
- Corpus linguistics
- .
- Central tool: statistics
- Fancy way of saying "counting things"

Computational Linguistics 1

Advantages

- · Generalize patterns as they exist in actual language use
- Little need for knowledge (just count!)
- Systems more robust and adaptable
- Systems degrade more gracefully

omputational Linguistics 1

It's all about the corpus!

 Corpus (pl. corpora): a collection of natural language text systematically gathered and organized in some manner
 Brown Corpus, Wall Street journal, SwitchBoard, ...

- · Can we learn how language works from corpora?
- Look for patterns in the corpus

Features of a Corpus

- Size
- · Balanced or domain-specific
- Written or spoken
- Raw or annotated
- Free or pay
- Other special characteristics (e.g., bitext)

Computational Linguistics 1

Grab a "corpus"...

Computational Linguistics 1

Corpus Characteristics

- Size: ~0.5 MB
- Tokens: 71,370
- Types: 8,018

Computational Linguistics 1

Average frequency of a word: # tokens / # types = 8.9
 But averages lie....

Most Frequent Words (Unigrams)

	Word	Freq.	Use
	the	3332	determiner (article)
	and	2972	conjunction
	а	1775	determiner
	to	1725	preposition, verbal infinitive marker
	of	1440	preposition
	was	1161	auxiliary verb
	it	1027	(personal/expletive) pronoun
	in	906	preposition
/m Manning and S	hütze		

What else can we do by counting?

Raw Bigram Co	llocat	tions		
Frequency	Word 1	Word 2		
80871	of	the		
58841	in	the		
26430	to	the		
21842	on	the		
21839	for	the		
18568	and	the		
16121	that	the		
15630	at	the		
15494	to	be		
13899	in	а		
13689	of	а		
13361	by	the		
13183	with	the		
12622	from	the		
11428	New	York		
Most frequent bigram collocations in the New York Times, from Manning and Shütze				
Computational Linguistics 1				

37

T IIICICU DIGIUI		locali	0115	
Frequency	Word 1	Word 2	POS	
11487	New	York	AN	
7261	United	States	AN	
5412	Los	Angeles	NN	
3301	last	year	AN	
3191	Saudi	Arabia	NN	
2699	last	week	AN	
2514	vice	president	AN	
2378	Persian	Gulf	AN	
2161	San	Francisco	N N	
2106	President	Bush	N N	
2001	Middle	East	AN	
1942	Saddam	Hussein	N N	
1867	Soviet	Union	AN	
1850	White	House	AN	
1633	United	Nations	AN	

Three Pillars of Statistical NLP

- Corpora
- Representations
- Models and algorithms

Agenda

- Administrivia
- Introduction to Computational Linguistics & applications
- Rule-based & statistical NLP

HW0:

Online tonight, due next Thursday before class

Next time:

Introduction to finite-state models:
 regular expressions, Chomsky hierarchy, automata and transducers

mputational Linguistics 1