Computational Linguistics 1
CMSC/LING 723, LBSC 744

Agenda

- Homework
- HW1 - graded! (sending by email)
- HW2 - graded by next Tuesday (maybe Thursday)
- HW3 - due next Thursday 10/13
- Questions, comments, concerns?
- Re-visit Viterbi \& Forward Algorithms
- Forward-Backward Algorithm

Viterbi Algorithm

- Use an $N \times T$ trellis $\left[v_{t j}\right]$
- Just like in forward algorithm
- $v_{t j}$ or $v_{t}(j)$
$=P$ (in state j after seeing t observations and passing through the
most likely state sequence so far)
$=P\left(q_{1}, q_{2}, \ldots q_{t-1}, q_{t-j}, o_{1}, o_{2}, \ldots o_{t}\right)$
- Each cell = extension of most likely path from other cells $v_{t}(j)=\max _{i} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$
- $v_{t-1}(i)$: Viterbi probability until ($t-1$)
- $a_{i j}$: transition probability of going from state i to j
- $b_{j}\left(o_{t}\right)$: probability of emitting symbol o_{t} in state j
- $P=\max _{i} v_{T}(i)$

Viterbi Algorithm: Formal Definition

- Initialization
$v_{1}(j)=\pi_{i} b_{i}\left(o_{1}\right) ; 1 \leq i \leq N$
$B T_{1}(i)=0$
- Recursion
$v_{t}(j)=\max _{i=1}^{N}\left[v_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) ; 1 \leq i \leq N, 2 \leq t \leq T$
$B T_{1}(i)=\arg \max _{i=1}^{N}\left[v_{t-1}(i) a_{i j}\right]$
- Termination
$P^{*}=\underset{\substack{\text { max } \\ 1=1}}{N} v_{T}(j)$
$q_{T}^{*}=\underset{i=i}{\arg \underset{1}{N} v_{T}(j)}$

Viterbi Algorithm (version 2)

word sequence: $W=w_{1} \ldots w_{n}$, size of tagset $|T|=m$ for $t=1$ to n

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{m}
$$

$$
\zeta_{j}(t) \leftarrow \operatorname{argmax}_{i}\left[\alpha_{i}(t-1)^{*} a_{i j}\right]
$$

$$
\alpha_{j}(t) \leftarrow \max _{i}\left[\alpha_{i}(t-1)^{*} a_{i j}\right]^{*} b_{j}\left(w_{t}\right)
$$

$\zeta_{0}(n+1) \leftarrow \operatorname{argmax}_{i}\left(\alpha_{i}(n)\right)$
$\rho(n+1) \leftarrow 0$
for $t=n$ to 1

$$
\rho(t) \leftarrow \zeta_{\rho(t+1)}(t+1)
$$

$$
\mathrm{T}^{\wedge}(t) \leftarrow \tau_{\rho(t)}
$$

Forward Algorithm: Formal Definition

- Initialization
$\alpha_{1}(j)=\pi_{j} b_{j}\left(o_{1}\right), 1 \leq j \leq N$
- Recursion
$\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) ; 1 \leq j \leq N, 2 \leq t \leq T$
- Termination

$$
P(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

\qquad

Forward and Backward Probabilities
word sequence: $W=w_{1} \ldots w_{n}$, for time $1 \leq t \leq n$
Forward probability:
(probability of seeing initial sequence $\boldsymbol{w}_{1} \ldots \boldsymbol{w}_{\boldsymbol{t}}$ and having tag j at time \boldsymbol{t})

$$
\alpha_{0}(0)=1 \quad \alpha_{j}(t)=\left(\sum_{i=1}^{m} \alpha_{i}(t-1) a_{i j}\right) b_{j}\left(w_{t}\right)
$$

Backward probability:

(probability of seeing remaining sequence $\boldsymbol{w}_{t+1} \ldots w_{n}$ given tag i at time t)

$$
\begin{aligned}
& \beta_{i}(n)=a_{i 0} \quad \beta_{i}(t)=\sum_{j=1}^{m} \beta_{j}(t+1) a_{i j} b_{j}\left(w_{t+1}\right) \\
& \mathrm{P}\left(w_{1} \ldots w_{n}\right)=\beta_{0}(0)=\sum_{i=1}^{m} \alpha_{i}(n) a_{i 0}
\end{aligned}
$$

Forward Algorithm

- Use an $N \times T$ trellis or chart $\left[\alpha_{t j}\right]$
- Forward probabilities: $\alpha_{t j}$ or $\alpha_{t}(j)$
$\cdot=P$ (being in state j after seeing t observations)
- $=P\left(o_{1}, o_{2}, \ldots o_{t}, q_{t}=j\right)$
- Each cell $=\sum$ extensions of all paths from other cells $\alpha_{t}(j)=\sum_{i} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$
- $\alpha_{t-1}(i)$: forward path probability until ($t-1$)
- $a_{i j}$ transition probability of going from state i to j
- $b_{j}\left(o_{t}\right)$: probability of emitting symbol o_{t} in state j
- $P(O \mid \lambda)=\sum_{i} \alpha_{T}(i)$

Forward-Backward (Baum-Welsch) Algorithm

- What if, instead of wanting to know:
- P (being in state j after seeing t observations) (Forward Algorithm)
- P (in state j after seeing t observations and passing through the most likely state sequence so far) (Viterbi Algorithm)
- We want to know:
- P (being in state j at time t given the entire observation sequence)
- P (being in state j at time t and being in state k at time $t+1$ given the entire observation sequence)
- Our forward probability $\alpha_{j}(t)$ is insufficient to calculate these conditional probabilities
- Also need a backward probability
computational Linguistics 1
10

New Parameters for Forward-Backward

Probability of having tag i at time t given $w_{1} \ldots w_{n}$

$$
\gamma_{i}(t)=\frac{\alpha_{i}(t) \boldsymbol{\beta}_{i}(t)}{\sum_{j=1}^{m} \alpha_{j}(t) \beta_{j}(t)}
$$

Probability of having tag i at time t and tag j at time $t+1$, given $w_{1} \ldots w_{n}$

$$
\xi_{i j}(t)=\frac{\gamma_{i}(t) a_{i j} b_{j}\left(w_{t+1}\right) \beta_{j}(t+1)}{\beta_{i}(t)}
$$

Forward-Backward Algorithm
$\begin{aligned} & \text { word sequence: } \\ & \text { for } t=1 \text { to } n\end{aligned}$
for $t=1$ to n
for $j=1$ to m
$\alpha_{j}(t) \leftarrow\left(\sum_{i=0}^{m} \alpha_{i}(t-1) a_{i j}\right) b_{j}\left(w_{t}\right)$
for $i=1$ to m
$\boldsymbol{\beta}_{i}(n) \leftarrow \boldsymbol{a}_{i 0}$
for $i=1$ to m
$\gamma_{i}(n) \leftarrow \frac{\alpha_{i}(n) \beta_{i}(n)}{\sum_{j=1}^{\mu_{i} \alpha_{j}(n) \beta_{j}(n)}}$
for $t=n-1$ to 1
for $i=1$ to m
$\boldsymbol{\beta}_{i}(t) \leftarrow \sum_{j=1}^{m} \boldsymbol{\beta}_{j}(t+1) a_{i j} \boldsymbol{b}_{j}\left(\boldsymbol{w}_{t+1}\right)$
for $i=1$ to m
$\gamma_{i}(t) \leftarrow \frac{\left.\alpha_{i}(t)\right)_{j}(t)}{\sum_{j=1}^{\alpha_{j=1} \alpha_{j}(t) \beta_{j}(t)}}$
for $j=1$ to m
$\xi_{i j}(t) \leftarrow \frac{\gamma_{i}(t) a_{i j} b_{j}\left(w_{t+1}\right) \beta_{j}(t+1)}{\beta_{i}(t)}$

Computing $\alpha, \beta, \gamma, \xi$

$t: 123456$
$O: \uparrow \downarrow \uparrow \leftrightarrow \downarrow \leftrightarrow$
$\left[\begin{array}{l}P(\uparrow \mid \text { Bear })=0.1 \\ P(\downarrow \text { Bear })=0.6 \\ P(\leftrightarrow \mid \text { Bear })=0.3\end{array}\right] \quad\left[\begin{array}{c}P(\uparrow \mid \text { Buell })=0.7 \\ P(|\mid \text { Bull })=0.1 \\ P(\leftrightarrow \mid \text { Bul })=0.2\end{array}\right]\left[\begin{array}{c}P(\uparrow \mid \text { Static })=0.3 \\ P(\mid \text { Stati })=0.3 \\ P(\mapsto \mid \text { Static })=0.4\end{array}\right]$
$\lambda_{\text {stock }}$

Forward-Backward, M-step
corpus of N sentences, $W_{s}=w_{1}^{s} \ldots w_{\left|W_{s}\right|}^{s}$, size of tagset $|\mathcal{T}|=m$ initialize $a_{i j}, a_{0 j}, a_{j 0}$, and $b_{j}\left(v_{k}\right)$ to 0 for all i, j, k for $i=1$ to m
$c(i) \leftarrow \sum_{s=1}^{N} \sum_{t=1}^{\left|W_{s}\right|} \gamma_{i}^{s}(t)$
$a_{0 i} \leftarrow \frac{1}{N} \sum_{s=1}^{N} \gamma_{i}^{s}(1)$
$a_{i 0} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \gamma_{i}^{s}\left(\left|W_{s}\right|\right)$
for $\boldsymbol{j}=1$ to \boldsymbol{m}
$a_{i j} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{\left|W_{s}\right|-1} \xi_{i j}^{s}(t)$
for $k=1$ to $|V|$
$b_{i}\left(v_{k}\right) \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{\left|W_{s}\right|} \delta_{w_{t}^{s}, v_{k}} \gamma_{i}^{s}(t)$

Agenda: Summary
- Review Viterbi, Forward Algorithms
• Forward-Backward (Baum-Welsch) Algorithm
- Midterm
Computational Linguistics 1

