Computational Linguistics 1 CMSC/LING 723, LBSC 744

18 TAYRYLAND Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland Lecture 11: 6 October 2011

Re-visit Viterbi & Forward Algorithms
 Forward-Backward Algorithm

· HW1 - graded! (sending by email)

HW3 – due next Thursday 10/13Questions, comments, concerns?

HW2 – graded by next Tuesday (maybe Thursday)

Agenda • Homework

Computational Linguistics 1

Viterbi Algorithm

- Use an $N \times T$ trellis $[v_{tj}]$
- Just like in forward algorithm
- *v*_{ti} or *v*_t(j)
- g for a set of the second s
- $= P(q_1, \, q_2, \, \dots \, q_{t-1}, \, q_{t=j}, \, o_1, \, o_2, \, \dots \, o_t)$
- Each cell = extension of most likely path from other cells $v_t(j) = \max_i v_{t-1}(i) a_{ij} b_j(o_t)$
- v_{t-1}(i): Viterbi probability until (t-1)
- a_{ij}: transition probability of going from state *i* to *j*
- $b_j(o_t)$: probability of emitting symbol o_t in state j

• $P = \max_i v_T(i)$

Computational Linguistics 1

Computational Linguistics 1 **Viterbi Algorithm: Formal Definition •** Initialization $v_1(j) = \pi_i b_i(o_1); 1 \le i \le N$ $BT_1(i) = 0$ **•** Recursion $v_t(j) = \max_{i=1}^{N} [v_{t-1}(i)a_{ij}] b_j(o_t); 1 \le i \le N, 2 \le t \le T$ $BT_1(i) = \arg \max_{i=1}^{N} [v_{t-1}(i)a_{ij}]$ **•** Termination $P^* = \max_{l=1}^{N} v_T(j)$ $q_T^* = \arg \max_{l=1}^{N} v_T(j)$

HMM Tagger – Initialization (v2)

word sequence: $W = w_1 \dots w_n$, for time $1 \le t \le n$ total corpus size: Ninput (word) vocabulary: $v_i \in V$ for $1 \le i \le k$ output (tag) vocabulary: $\tau_j \in T$ for $1 \le j \le m$ Let $b_j(v_j) = P(v_i \mid \tau_j) = c(\tau_j, v_j)/c(\tau_j)$ Let $a_{ij} = P(\tau_j \mid \tau_i) = [c(\tau_i, \tau_j) + 1]/[c(\tau_i) + m]$ Let $a_{0j} = \pi(\tau_j) = P(\tau_j) = c(\tau_j)/N$ Let $\alpha_0(0) = 1$ and $\alpha_i(t) = \max_i [\alpha_i(t - 1) * a_{ij}] * b_j(w_i)$ $\zeta_i(t) = \operatorname{argmax}_i [\alpha_i(t - 1) * a_{ij}]$ (backtrace)

Computational Linguistics 1

Viterbi Algorithm (version 2)

```
word sequence: W = w_1 \dots w_n, size of tagset |T| = m

for t = 1 to n

for j = 1 to m

\zeta_j(t) \leftarrow \operatorname{argmax}_i [\alpha_i(t-1) * a_{ij}]

\alpha_j(t) \leftarrow \max_i [\alpha_i(t-1) * a_{ij}] * b_j(w_t)

\zeta_0(n + 1) \leftarrow \operatorname{argmax}_i (\alpha_i(n))

\rho(n+1) \leftarrow 0

for t = n to 1

\rho(t) \leftarrow \zeta_{\rho(t+1)}(t + 1)

\tau^{\hat{}}(t) \leftarrow \tau_{\rho(t)}
```

Computational Linguistics 1

Viterbi Algorithm (version 3)

- pseudocode for the Viterbi algorithm is also given in the textbook
- · Just be sure to initialize as defined on slide 41 of lecture 9

Forward Algorithm

- Use an $N \times T$ trellis or chart $[\alpha_{ti}]$
- Forward probabilities: α_{ti} or $\alpha_t(j)$
- = P(being in state *j* after seeing *t* observations) • = $P(o_1, o_2, \dots o_t, q_t=j)$
- Each cell = \sum extensions of all paths from other cells $\alpha_t(j) = \sum_i \alpha_{t-1}(i) a_{ij} b_j(o_t)$
- α_{t-1}(i): forward path probability until (t-1)
- a_{ij}: transition probability of going from state *i* to *j*
- b_j(o_t): probability of emitting symbol o_t in state j
- $P(O|\lambda) = \sum_{i} \alpha_{T}(i)$

mputational Linguistics 1

Computational Linguistics 1

Forward-Backward (Baum-Welsch) Algorithm · What if, instead of wanting to know: • P(being in state j after seeing t observations) (Forward Algorithm) • P(in state j after seeing t observations and passing through the most likely state sequence so far) (Viterbi Algorithm) We want to know: • P(being in state *j* at time *t* given the entire observation sequence) • P(being in state *j* at time *t* and being in state *k* at time *t*+1 given the entire observation sequence) • Our forward probability $\alpha_i(t)$ is insufficient to calculate these conditional probabilities · Also need a backward probability tational Linguistics 1

Forward-Backward Algorithm
word sequence: $m{W} = w_1 \dots w_n,$ size of tagset $ \mathcal{T} = m lpha_0(0) \leftarrow 1$ for $t = 1$ to n
for $j=1$ to m
$lpha_j(t) \leftarrow \left(\sum_{i=0}^m lpha_i(t-1)a_{ij} ight) b_j(w_t)$
for $i = 1$ to m
$\beta_i(n) \leftarrow a_{i0}$
for $i=1$ to m
$\gamma_i(n) \leftarrow rac{lpha_i(n)eta_i(n)}{\sum_{i=1}^m lpha_i(n)eta_i(n)}$
for $t = n - 1$ to 1
for $i = 1$ to m
$eta_i(t) \leftarrow \sum_{j=1}^m eta_j(t+1) a_{ij} b_j(w_{t+1})$
for $i = 1$ to m
$\gamma_i(t) \leftarrow rac{lpha_i(t)eta_i(t)}{\sum_{j=1}^m lpha_j(t)eta_j(t)}$
for $j=1$ to m
$oldsymbol{\xi}_{ij}(t) \leftarrow rac{\gamma_i(t)a_{ij}b_j(w_{t+1})eta_j(t+1)}{eta_i(t)}$
Computational Linguistics 1

Forward-Backward Algorithm, E-step

```
word sequence: W = w_1 \dots w_n, size of tagset |\mathcal{T}| = m \quad \alpha_0(0) \leftarrow 1
for t = 1 to n
\alpha_j(t) \leftarrow (\sum_{i=0}^m \alpha_i(t-1)a_{ij}) b_j(w_i)
for i = 1 to m
\beta_i(n) \leftarrow a_{i0}
for i = 1 to m
\gamma_i(n) \leftarrow \frac{\alpha_i(n)\beta_i(n)}{\sum_{j=1}^m a_j(n)\beta_j(n)}
for t = n - 1 to 1
for i = 1 to m
\beta_i(t) \leftarrow \sum_{j=1}^m \beta_j(t+1)a_{ij}b_j(w_{t+1})
for i = 1 to m
\gamma_i(t) \leftarrow \frac{\gamma_i(1)\beta_j(t)}{\sum_{j=1}^m \alpha_j(1)\beta_j(t)}
for j = 1 to m
\xi_{ij}(t) \leftarrow \frac{\gamma_i(1\alpha_{ij}b_j(w_{t+1})\beta_j(t+1)}{\beta_i(t)}
Computational Linguistics 1
```

Forward-Backward, M-step

corpus of N sentences, $W_s = w_1^s \dots w_{|W_s|}^s$, size of tagset $|\mathcal{T}| = m$ initialize a_{ij}, a_{0j}, a_{j0} , and $b_j(v_k)$ to 0 for all i, j, kfor i = 1 to m $c(i) \leftarrow \sum_{s=1}^{N} \sum_{t=1}^{|W_s|} \gamma_i^s(t)$ $a_{0i} \leftarrow \frac{1}{N} \sum_{s=1}^{N} \gamma_i^s(1)$ $a_{i0} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \gamma_i^s(|W_s|)$ for j = 1 to m $a_{ij} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{|W_s|-1} \xi_{ij}^s(t)$ for k = 1 to |V| $b_i(v_k) \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{|W_s|} \delta_{w_i^s, v_k} \gamma_i^s(t)$

Computational Linguistics 1

Agenda: Summary

- Review Viterbi, Forward Algorithms
- Forward-Backward (Baum-Welsch) Algorithm

Midterm

Computational Linguistics 1