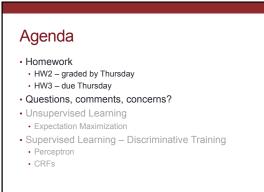
Computational Linguistics 1 CMSC/LING 723, LBSC 744

NUERSITA 98 18 NRYLAND

Computational Linguistics 1

Computational Linguistics 1

Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland Lecture 12: 11 October 2011



Computational Linguistics 1

nputational Linguistics 1

Forward and Backward Probabilities word sequence: $W = w_1 \dots w_n$, for time $1 \le t \le n$ Forward probability: (probability of seeing initial sequence $w_1 \dots w_t$ and having tag j at time t) $\alpha_0(0) = 1$ $\alpha_j(t) = (\sum_{i=1}^m \alpha_i(t-1)a_{ij}) b_j(w_t)$ Backward probability: (probability of seeing remaining sequence $w_{t+1} \dots w_n$ given tag i at time t) $\beta_i(n) = a_{i0}$ $\beta_i(t) = \sum_{j=1}^m \beta_j(t+1)a_{ij}b_j(w_{t+1})$ $P(w_1 \dots w_n) = \beta_0(0) = \sum_{i=1}^m \alpha_i(n)a_{i0}$

New Parameters for Forward-Backward

Probability of having tag i at time t given $w_1 \dots w_n$

$$\gamma_i(t) = rac{lpha_i(t)eta_i(t)}{\sum_{j=1}^m lpha_j(t)eta_j(t)}$$

Probability of having tag i at time t and tag j at time t+1, given $w_1 \ldots w_n$

$$\xi_{ij}(t)=rac{\gamma_i(t)a_{ij}b_j(w_{t+1})eta_j(t+1)}{eta_i(t)}$$

Forward-Backward Algorithm, E-step word sequence: $W = w_1 \dots w_n$, size of tagset $|\mathcal{T}| = m \quad \alpha_0(0) \leftarrow 1$ for t = 1 to n

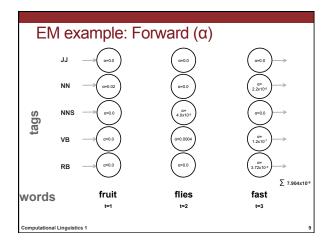
for t = 1 to nfor j = 1 to m $\alpha_j(t) \leftarrow \left(\sum_{t=0}^{m} \alpha_i(t-1)a_{ij}\right) b_j(w_t)$ for i = 1 to m $\beta_i(n) \leftarrow a_0$ for i = 1 to m $\gamma_i(n) \leftarrow \sum_{j=1}^{m} \alpha_{i(n)\beta_j(n)}$ for t = n - 1 to 1for i = 1 to m $\beta_i(t) \leftarrow \sum_{j=1}^{m} \beta_j(t+1)a_{ij}b_j(w_{t+1})$ for i = 1 to m $\gamma_i(t) \leftarrow \sum_{j=1}^{m} \alpha_{j(1)\beta_j(t)}$ for j = 1 to m $\xi_{ij}(t) \leftarrow \frac{\gamma_i(1)\alpha_{ij}b_j(w_{t+1})\beta_j(t+1)}{\beta_i(t)}$ Forward-Backward Algorithm, new model $\tilde{b}_i(v_k) = \frac{\sum_{t=1}^n \delta_{w_t,v_k} \gamma_i(t)}{\sum_{t=1}^n \gamma_i(t)}$ $\tilde{a}_{ij} = \frac{\sum_{t=1}^{n-1} \xi_{ij}(t)}{\sum_{t=1}^n \gamma_i(t)}$ $\tilde{a}_{0j} = \gamma_j(1)$ $\tilde{a}_{i0} = \frac{\gamma_i(n)}{\sum_{t=1}^n \gamma_i(t)}$ where δ_{w_t,v_k} is an indicator function indicating that the word at time t was v_k .

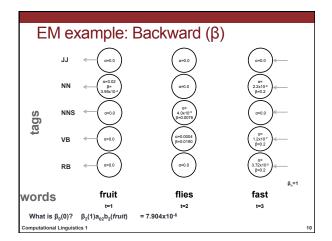
Forward-Backward, M-step

Computational Linguistics 1

corpus of N sentences, $W_s = w_1^s \dots w_{|W_s|}^s$, size of tagset $|\mathcal{T}| = m$ initialize a_{ij}, a_{0j}, a_{j0} , and $b_j(v_k)$ to 0 for all i, j, kfor i = 1 to m $c(i) \leftarrow \sum_{s=1}^{N} \sum_{t=1}^{|W_s|} \gamma_i^s(t)$ $a_{0i} \leftarrow \frac{1}{N} \sum_{s=1}^{N} \gamma_i^s(1)$ $a_{i0} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \gamma_i^s(|W_s|)$ for j = 1 to m $a_{ij} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{|W_s|-1} \xi_{ij}^s(t)$ for k = 1 to |V| $b_i(v_k) \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{|W_s|} \delta_{w_i^s, v_k} \gamma_i^s(t)$

EM example								
fruit flies fast								
NN NNS VB $a_{ij} = \mathbf{P}(au_j au_i)$								
VB RB								
11		j :	0	1	2	3	4	5
	i			JJ	NN	NNS	VB	RB
$b_j(w)$	0	$\langle s \rangle$	0	0.3	0.2	0.2	0.2	0.1
$b_2(fruit) = P(fruit NN) = 0.1$	1	JJ	0.2	0.1	0.3	0.2	0.1	0.1
$b_3(flies) = P(flies NNS) = 0.01$	2	NN	0.2	0.1	0.2	0.2	0.2	0.1
$b_4(flies) = P(flies VB) = 0.1$	3	NNS	0.2	0.1	0.1	0.2	0.3	0.1
$b_4(fast) = P(fast VB) = 0.01$	4	VB	0.2	0.1	0.2	0.2	0	0.3
$b_5(fast) = P(fast RB) = 0.3$	5	RB	0.2	0.1	0.2	0.1	0.2	0.2
$b_1(fast) = P(fast \mid JJ) = 0.05$								





$\begin{array}{l} EM example: \Upsilon \\ \gamma_i(t) \leftarrow \frac{\alpha_i(t)\beta_i(t)}{\sum_{j=1}^m \alpha_j(t)\beta_j(t)} \end{array}$							
t	j	lbl	α _i (t)	β _i (t)	$\alpha_{i}(t)\beta_{i}(t)$	γ _i (t)	
1	2	NN	0.02	0.0003952	0.000007904	1	
2	3	NNS	0.00004	0.0076	0.00000304	0.038	
	4	VB	0.0004	0.019	0.0000076	0.962	
3	1	JJ	0.0000022	0.2	0.00000044	0.056	
	4	VB	0.00000012	0.2	0.00000024	0.003	
	5	RB	0.0000372	0.2	0.00000744	0.941	
utatio	utational Linguistics 1						

EM example: ξ $\xi_{ij}(t) \leftarrow \frac{\gamma_i(t)a_{ij}b_j(w_{t+1})\beta_j(t+1)}{\beta_i(t)}$										
t	i.	i Ibl	j	j Ibl	γ _i (t)	a _{ii}	b _j (w _{t+1})	β _i (t + 1)	β _i (t)	ξ _{ij} (t)
1	2	NN	3	NNS	1	0.2	0.01	0.0076	0.0003952	0.0385
			4	VB	1	0.2	0.1	0.019	0.0003952	0.9615
2	3	NNS	1	JJ	0.038	0.1	0.05	0.2	0.0076	0.005
			4	VB	0.038	0.3	0.01	0.2	0.0076	0.003
			5	RB	0.038	0.1	0.3	0.2	0.0076	0.03
	4	VB	1	JJ	0.962	0.1	0.05	0.2	0.019	0.051
			4	VB	0.962	0	0.01	0.2	0.019	0
			5	RB	0.962	0.3	0.3	0.2	0.019	0.911
mputational Linguistics 1										

Forward-Backward Algorithm, new model

$$egin{aligned} ilde{b}_i(v_k) &= rac{\sum_{t=1}^n \delta_{w_t,v_k} \gamma_i(t)}{\sum_{t=1}^n \gamma_i(t)} \ ilde{a}_{ij} &= rac{\sum_{t=1}^{n-1} m{\xi}_{ij}(t)}{\sum_{t=1}^n \gamma_i(t)} \end{aligned}$$

$$\tilde{a}_{0j}=\gamma_j(1)$$

$$ilde{a}_{i0} = rac{\gamma_i(n)}{\sum_{t=1}^n \gamma_i(t)}$$

where $\delta w_{t\nu} v_k$ is an indicator function indicating that the word at time t was $v_k.$

Computational Linguistics 1

Forward-Backward, M-step corpus of N sentences, $W_s = w_1^s \dots w_{|W_s|}^s$, size of tagset $|\mathcal{T}| = m$ initialize a_{ij}, a_{0j}, a_{j0} , and $b_j(v_k)$ to 0 for all i, j, kfor i = 1 to m $c(i) \leftarrow \sum_{s=1}^{N} \sum_{t=1}^{|W_s|} \gamma_i^s(t)$ $a_{0i} \leftarrow \frac{1}{N} \sum_{s=1}^{N} \gamma_i^s(1)$ $a_{i0} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \gamma_i^s(|W_s|)$ for j = 1 to m $a_{ij} \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{|W_s|-1} \xi_{ij}^s(t)$ for k = 1 to |V| $b_i(v_k) \leftarrow \frac{1}{c(i)} \sum_{s=1}^{N} \sum_{t=1}^{|W_s|} \delta_{w_s^s, v_k} \gamma_i^s(t)$

Training versus held-out data

- Train a model from training data
- Perform EM until convergence
- If training data is used, this doesn't work ($\lambda \leftarrow 1$) • Already have maximum likelihood solution for training data
- If we now try to maximize the likelihood
 Hold aside some data from training
- Converge on held-out data
- Prevents over-training

Computational Linguistics 1

Agenda

omputational Linguistics 1

- Homework
- Unsupervised Learning
 Expectation Maximization
- Supervised Learning Discriminative Training
 Perceptron
- CRFs

nputational Linguistics 1

Discriminative Training

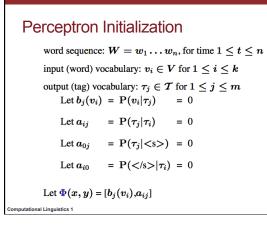
- Statistical model training involves maximizing some objective function
- For an HMM, we use maximum likelihood training
 Maximize the probability of the training set
- Reduction in errors is the true objective of learning
- Another option is to try to directly optimize error rate or some other closely related objective
- Consider not just truth, but also other candidates

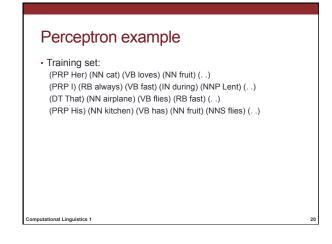
Computational Linguistics 1

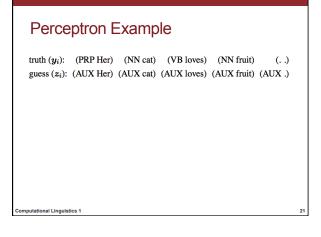
Perceptron

- One approach that has been around since late 60s is the perceptron
- Basic idea:
 - Find the best scoring analysis
 - (e.g. POS tag sequence)
 - Make its score lower, by penalizing its *features*
 - · Make the score of the truth better, by rewarding its features
 - · Go onto the next example

Computational Linguistics 1







Perceptron Example

nputational Linguistics 1

$ \mathbf{P}(\mathbf{PRP} < \mathbf{s} >) = 1$	P(.) = 1	
P(AUX AUX) = -4	P(Her AUX) = -1	P(Her PRP) = 1
P(NN PRP) = 1	P(cat AUX) = -1	P(cat NN) = 1
P(VB NN) = 1	P(loves AUX) = -1	P(loves VB) = 1
P(NN VB) = 1	P(fruit AUX) = -1	$\mathrm{P}(fruit \mathrm{NN}) = 1$
P(. NN) = 1	P(. AUX) = -1	P(. .) = 1

Perceptron Example

Computational Linguistics 1

```
 \begin{array}{ll} \mbox{truth} (y_i): \ (\mbox{PRP I}) & (\mbox{RB always}) \ (\mbox{VB fast}) & (\mbox{IN during}) \ (\mbox{NNP Lent}) \ (.\,.) \\ \mbox{guess} (z_i): \ (\mbox{PR I}) \ (\mbox{AUX always}) \ (\mbox{DT fast}) \ (\mbox{AUX during}) & (\mbox{DT Lent}) \ (.\,.) \\ \end{array}
```

```
      Computational Linguistics 1
```


truth (y_i) : (PRP Her) (NN cat) (VB loves) (NN fruit) (...) guess (z_i) : (PRP Her) (RB cat) (VB loves) (NN fruit) (...)

Perceptron: Notes

- Because this technique is optimizing (sequence) error rate, it does not involve a normalization factor
- Thus, it will overtrain
- . i.e. it will do very well on the training set, but not so well on new data, like unsmoothed maximum likelihood
- Techniques exist for controlling overtraining, such as regularization, voting, and averaging
- Perceptron models outperform maximum likelihoodoptimized models on a range of tasks
- POS-tagging, NP-chunking

Computational Linguistics 1

25

Computational Linguistics 1

Agenda: Summary

- Review Forward-Backward algorithm
- Unsupervised learning
- Apply EM

Computational Linguistics 1

- Begin discussion of discriminative supervised learning
 Perceptron
- Midterm review next lecture