Computational Linguistics 1 CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland

Lecture 15: 20 October 2011

Agenda

Computational Linguistics 1

- · Questions, comments, concerns?
- Context-Free Grammars
- Treebanks
- Inducing CFGs from trees
- Probabilistic CFGs
- Next week: parsing algorithms

Treebanks

- Treebanks are corpora in which each sentence has been paired with a parse tree Hopefully the right one!
- Encodes a particular grammatical framework
- These are generally created:
- · By first parsing the collection with an automatic parser · And then having human annotators correct each parse as necessary
- But...
 - Detailed annotation guidelines are needed
- · Explicit instructions for dealing with particular constructions
- · Difficult, but essential, to ensure consistency
- · Starting point for a data-driven approach

Computational Linguistics 1

Penn Treebank

- Penn TreeBank is a widely used treebank
 - 1 million words from the Wall Street Journal
 - "Least-common denominator" syntactic annotation, i.e.relatively theory-neutral
- Treebanks implicitly define a grammar for the language

utational Linguistics 1

Penn Treebank: Example
((\$ (''')
(S-TPC-2
(NP-SBJ-1 (PRP We))
(VP (MD would)
(VP (VB have)
(\$
(NP-SBJ (-NONE- *-1))
(VP (TO to)
(VP (VB wait)
(SBAR-TMP (IN until)
(8
(NP-SBJ (PRP we))
(VP (VBP have)
(VP (VBN collected)
(PP-CLR (IN on)
(NP (DT those)(NNS assets)))))))))))))))
(, ,) ('' '')
(NP-SBJ (PRP he))
(VP (VBD said)
(S (-NONE- *T*-2)))
(· ·)))
Computational Linguistics 1

FRAG Fragment INTJ Interjection LST List marker NAC Not a Constituent NP Noun Phrase NX Complex NP PP Prepositional Phrase PRN Parenthetical PRT Particle QP Quantifier Phrase RRC Reduced Relative Clause S Simple Clause SBAR Subordinate Question Clause SINV Inverted Clause S Sinverted Clause SQ Inverted Question UCP Unlike Coordinated Phrase WHNP Wh-noun Phrase WHADJP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHNP Wh-noun Phrase WHPP Wh-prepositional Phrase X Unknown • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP Raw treebank contains empty categories	• BS	Adjective Phrase	I tagse	et (not including pre	e-term	Conjunction Phrase
PP Prepositional Phrase PRN Parenthetical PRT Particle QP Quantifier Phrase RRC Reduced Relative Clause S Simple Clause SBAR Subordinate Clause SBARQ Subordinate Question Clause SINV Inverted Clause SQ Inverted Question UCP Unlike Coordinate Phrase VP Verb Phrase WHADJP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHN Wh-noun Phrase WHPP Wh-prepositional Phrase X Unknown V • • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP Verter • •	FRAG	Fragment	INTJ	Interjection	LST	
QP Quantifier Phrase RRC Reduced Relative Clause S Simple Clause SBAR Subordinate Clause SBARQ Subordinate Question Clause SINV Inverted Clause SQ Inverted Question UCP Unlike Coordinated Phrase VP Verb Phrase WHADJP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHNP Wh-noun Phrase WHPP Wh-prepositional Phrase X Unknown V Verb Phrase • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP Verb Phrase Verb Phrase Verb Phrase	NAC	Not a Constituent	NP	Noun Phrase	NX	Complex NP
SBAR Subordinate Clause SBARQ Subordinate Question Clause SINV Inverted Clause SQ Inverted Question UCP Unlike Coordinate Phrase VP Verb Phrase WHADJP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHNP Wh-noun Phrase WHPP Wh-prepositional Phrase X Unknown V VP VP-TMP • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP V VP VP VP VP	PP	Prepositional Phrase	PRN	Parenthetical	PRT	Particle
SQ Inverted Question UCP Unlike Coordinated Phrase VP Verb Phrase WHADJP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHNP Wh-noun Phrase WHPP Wh-prepositional Phrase X Unknown WHNP Wh-noun Phrase • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP V Verb Phrase Verb Phrase	QP	Quantifier Phrase	RRC	Reduced Relative Clause	S	Simple Clause
WHADJP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHNP Wh-noun Phrase WHPP Wh-prepositional Phrase X Unknown Vincom Vincom • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP Vincom Vincom Vincom	SBAR	Subordinate Clause	SBARQ	Subordinate Question Clause	SINV	Inverted Clause
WHPP Wh-prepositional Phrase X Unknown • Other "function" tags may label constituents, e.g. PP-TMP means temporal PP	SQ	Inverted Question	UCP	Unlike Coordinated Phrase	VP	Verb Phrase
Other "function" tags may label constituents, e.g. PP-TMP means temporal PP	WHADJP	Wh-adjective Phrase	WHAVP	Wh-adverb Phrase	WHNP	Wh-noun Phrase
means temporal PP	WHPP	Wh-prepositional Phrase	х	Unknown		
Raw account contains empty categories						

Grammar Induction

- Extract context-free rules from trees in the treebank
- Context-free rules of the form:
- $A \to B \ C \ D \ E$
- where A is the (one and only) 'parent'
- and B, C, D, and E are the 'children'
- · also refer to left-hand side (LHS): A and right-hand side (RHS): B C D E

Computational Linguistics 1

Interpretations of a CFG rule

- For a rule such as $S \rightarrow NP VP$, there are various interpretations of what this means
- · Derivations:
- An NP and a VP can combine (or compose) to produce an S · An S can be split into an NP followed by a VP
- Trees:
- An S node can generate an NP and a VP node
- · An S node can be the parent of an NP and a VP node

Computational Linguistics 1

Derivations

- If we have a rule $A \rightarrow \alpha$, then define a *derives* relation: $\beta A \gamma \Rightarrow \beta \alpha \gamma$.
- A string w₁...w_n is in the language of a CFG G if S⁺ ⇒* w₁...w_n
- For example, consider these noun compounding rules:
- (i) N \rightarrow N N (ii) N \rightarrow dog (iii) N \rightarrow food (iv) N \rightarrow can
- There are many possible derivations, s.t. N ⇒*dog food can
- 1. $N \Rightarrow N N \Rightarrow N can \Rightarrow N N can \Rightarrow N food can \Rightarrow dog food can$
- 2. $N \Rightarrow N N \Rightarrow N N N \Rightarrow N N can \Rightarrow N food can \Rightarrow dog food can$
- 3. $N \Rightarrow N N \Rightarrow N N N \Rightarrow dog N N \Rightarrow dog food N \Rightarrow dog food can$ $4. \quad N \Rightarrow N \; N \Rightarrow dog \; N \Rightarrow dog \; N \; N \Rightarrow dog \; food \; N \Rightarrow dog \; food \; can$
- 5
- Derivation 1. is the *rightmost* derivation, always expanding the rightmost non-terminal; derivation 4. is a *leftmost* derivation

Computational Linguistics 1

Labeled Bracketing

Another representation of the same tree:

(S (NP (PRP we)) (VP (VBD helped) (NP (PRP her)) (VP (VB paint) (NP (DT the) (NN house)))))

- Some terminology (review):
- · Terminals are words.
- Penn Treebank non-terminal set has 2 disjoint subsets:
- Pre-terminal (POS) tags rewrite to exactly 1 word.
- The rest never have terminals as children.

Computational Linguistics 1

Probabilistic CFGs (PCFGs)

- A PCFG is a CFG with a probability assigned to each rule:
- $\begin{array}{ll} \mathsf{P}(\mathsf{S} \rightarrow \mathsf{NP} \; \mathsf{VP}) &= \mathsf{P}(\mathsf{rhs} = (\mathsf{NP} \; \mathsf{VP}) \mid \mathsf{lhs} = \mathsf{S}) \\ &= \mathsf{P}(\mathsf{NP} \; \mathsf{VP} \mid \mathsf{S}) \end{array}$
- Joint probability of the right-hand side (RHS) can be decomposed using the chain rule:
- $\begin{array}{l} \mathsf{P}(\mathsf{S} \rightarrow \mathsf{NP} \; \mathsf{VP}) = & \mathsf{P}(\mathsf{NP} \mid \mathsf{S}) \ast \mathsf{P}(\mathsf{VP} \mid \mathsf{S}, \mathsf{NP}) \ast \\ & \mathsf{P}({<}/r{>} \mid \mathsf{S}, \; \mathsf{NP} \; \mathsf{VP}) \end{array}$

where </r> is an "end-of-rule" symbol

- Standard PCFG induction approach
- Count the number of times rules (local trees) occur
 Use relative frequency estimation for conditional probabilities

Computational Linguistics 1

CFG Equivalence

- Two CFGs G and G' are *strongly* equivalent if they describe the same language, and they produce identical trees for strings, modulo node labels
- Two CFGs G and G' are *weakly* equivalent if they describe the same language
- Sometimes a grammar G can be transformed to a weakly equivalent grammar G' that has some beneficial computational properties

Computational Linguistics 1

Normal Forms

- · Chomsky Normal Form (CNF) • A grammar G = (V,T,P,S[†]) is in CNF if all productions in P are in one
- of two forms:
- $A \rightarrow BC$ where A, B, $C \in V$ or A → a where $A \in V$ and $a \in T$
- Greibach Normal Form (GNF)
- A grammar G = (V,T,P,S[†]) is in GNF if all productions in P are of the following form:
- $\bullet A \to a X \qquad \text{where } A \in V \text{, } a \in T \text{ and } X \in V \text{*}$
- · Every CFG G has weakly equivalent CFGs in CNF or GNF · Chomsky Normal Form very useful for chart parsing

Computational Linguistics 1

mputational Linguistics 1

Penn Treebank CNF • Disjoint pre-terminal set, so all POS → word productions already in CNF

- Left or right factorization removes productions with > 2 **RHS** categories
- · Remaining issues:

onal Linguistics 1

Computational Linguistics 1

- · Remove empty categories (0 categories on RHS) Collapse unary productions (1 non-terminal on RHS)
- remove production $A \rightarrow B$ <u>Productions of the form</u> <u>Create new production</u>

 $C \to X A$ $C \rightarrow X A | B$

$C \to A X$	C ightarrow A B X
$C \to A A$	C o A B A B
B ightarrow lpha	A B ightarrow lpha

PCFG Induction and Factorization

- Original CFG rules: $\hat{\mathrm{P}}(A
 ightarrow lpha) = rac{C(A
 ightarrow lpha)}{\sum_{A
 ightarrow eta \in P} C(A
 ightarrow eta)}$
- · Left factorization:

$$\begin{split} \hat{\mathbf{P}}(A \to B \ A-B) &= \frac{\sum_{A \to B \alpha \in P} C(A \to B\alpha)}{\sum_{A \to \beta \in P} C(A \to \beta)} \\ \hat{\mathbf{P}}(A-X \to B \ A-X-B) &= \frac{\sum_{A \to X B \alpha \in P} C(A \to XB\alpha)}{\sum_{A \to X \beta \in P} C(A \to XB\alpha)} \\ \hat{\mathbf{P}}(A-X \to B \ D) &= \frac{C(A \to X \ B \ D)}{\sum_{A \to X \beta \in P} C(A \to X\beta)} \end{split}$$

PCFG Induction and Factorization Right factorization $\hat{\mathbf{P}}(A \to X_1 - \ldots - X_k B) = \hat{\mathbf{P}}(A \to X_1 \ldots X_k B)$ $\hat{\mathrm{P}}(X_1 - \ldots - X_k \to X_1 - \ldots - X_{k-1}X_k) = 1$ Collapsed unary productions $\hat{\mathrm{P}}(C \to X | B) = \hat{\mathrm{P}}(C \to X | A) * \hat{\mathrm{P}}(A \to B)$ $\hat{\mathrm{P}}(C \to A | B | X) = \hat{\mathrm{P}}(C \to A | X) * \hat{\mathrm{P}}(A \to B)$ $\hat{\mathrm{P}}(A|B \to \alpha) = \hat{\mathrm{P}}(A \to B) * \hat{\mathrm{P}}(B \to \alpha)$

Sparsity

- · We may observe in our corpus the following rule: $NP \rightarrow DT JJ JJ NN NN NNS$
- · We may not observe:
- $NP \rightarrow DT JJ JJ JJ NN NN NNS$
- Does this mean that the second rule should have zero probability?
- A "Markov" grammar is a factored grammar that provides probability mass to unobserved rules

```
Computational Linguistics 1
```

Left Factorization & "Markov" Grammars

- Take a rule from the grammar such as NP \rightarrow DT JJ NN NNS
- Left factorization:
- NP \rightarrow DT NP-DT
- NP-DT \rightarrow JJ NP-DT,JJ
- NP-DT,JJ \rightarrow NN NNS
- Markov grammar, order 1:
- NP → DT NP-DT
- $\bullet \ \text{NP-DT} \to \text{JJ} \ \text{NP-JJ} \qquad \text{"forget" that we saw a DT}$
- NP-JJ \rightarrow NN NP-NN
- NP-NN \rightarrow NN

Computational Linguistics 1

Agenda: Summary

- Questions, comments, concerns?
- Context-Free Grammars
- Treebanks
- Inducing CFGs from treesProbabilistic CFGs
- Next week: parsing algorithms

Computational Linguistics 1

25