
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 15: 20 October 2011

Agenda
• Questions, comments, concerns?
• Context-Free Grammars

•  Treebanks
•  Inducing CFGs from trees
•  Probabilistic CFGs

• Next week: parsing algorithms

2 Computational Linguistics 1

Treebanks
•  Treebanks are corpora in which each sentence has been

paired with a parse tree
•  Hopefully the right one!

• Encodes a particular grammatical framework
•  These are generally created:

•  By first parsing the collection with an automatic parser
•  And then having human annotators correct each parse as

necessary
• But…

•  Detailed annotation guidelines are needed
•  Explicit instructions for dealing with particular constructions
•  Difficult, but essential, to ensure consistency

• Starting point for a data-driven approach

Computational Linguistics 1 3

Penn Treebank
• Penn TreeBank is a widely used treebank

•  1 million words from the Wall Street Journal
•  “Least-common denominator” syntactic annotation,

i.e.relatively theory-neutral

•  Treebanks implicitly define a grammar for the language

Computational Linguistics 1 4

Penn Treebank: Example

Computational Linguistics 1 5

Treebank Grammars
• Such grammars tend to be very flat

•  Recursion avoided to ease annotators burden
•  Sometimes criticized for being so flat, e.g.,

(NP (NN system) (NN analyst) (NN arbitration) (NN chef))

• Penn Treebank has 4500 different rules for VPs,
including…
•  VP → VBD PP
•  VP → VBD PP PP
•  VP → VBD PP PP PP
•  VP → VBD PP PP PP PP

Computational Linguistics 1 6

2

Penn WSJ Non-Terminals (NTs)
• Basic non-terminal tagset (not including pre-terminals)

• Other “function” tags may label constituents, e.g. PP-TMP
means temporal PP

• Raw treebank contains empty categories
Computational Linguistics 1 7

Why treebanks?
•  Treebanks are critical to training statistical parsers
• Also valuable to linguist when investigating phenomena

Computational Linguistics 1 8

Grammar Induction
• Extract context-free rules from trees in the treebank
• Context-free rules of the form:

A → B C D E
•  where A is the (one and only) 'parent'
•  and B, C, D, and E are the 'children'
•  also refer to left-hand side (LHS): A

and right-hand side (RHS): B C D E

Computational Linguistics 1 9

CFG Induction

•  Local tree: Parent (S), children (NP VP)
• Each local tree represents a context-free rule:

S → NP VP

Computational Linguistics 1 10

Interpretations of a CFG rule
•  For a rule such as S → NP VP, there are various

interpretations of what this means
• Derivations:

•  An NP and a VP can combine (or compose) to produce an S
•  An S can be split into an NP followed by a VP

•  Trees:
•  An S node can generate an NP and a VP node
•  An S node can be the parent of an NP and a VP node

Computational Linguistics 1 11

Derivations
•  If we have a rule A → α, then define a derives relation: βAγ ⇒ βαγ.
•  A string w1...wn is in the language of a CFG G if S† ⇒∗ w1...wn

•  For example, consider these noun compounding rules:
(i) N → N N (ii) N → dog (iii) N → food (iv) N → can

•  There are many possible derivations, s.t. N ⇒∗dog food can
1.  N ⇒ N N ⇒ N can ⇒ N N can ⇒ N food can ⇒ dog food can
2.  N ⇒ N N ⇒ N N N ⇒ N N can ⇒ N food can ⇒ dog food can
3.  N ⇒ N N ⇒ N N N ⇒ dog N N ⇒ dog food N ⇒ dog food can
4.  N ⇒ N N ⇒ dog N ⇒ dog N N ⇒ dog food N ⇒ dog food can
5.  . . .

•  Derivation 1. is the rightmost derivation, always expanding the
rightmost non-terminal; derivation 4. is a leftmost derivation

Computational Linguistics 1 12

3

Pushdown automata
• Consider the leftmost derivation:

N ⇒ N N ⇒ dog N ⇒ dog N N ⇒ dog food N ⇒ dog food can

• We can represent this as an automaton, with a stack at
each state:

• Generally cannot be represented with finite-state

automaton

Computational Linguistics 1 13

Parse Tree, Derivation

Computational Linguistics 1 14

Labeled Bracketing
• Another representation of the same tree:

(S (NP (PRP we)) (VP (VBD helped) (NP (PRP her))
 (VP (VB paint) (NP (DT the) (NN house)))))

• Some terminology (review):
•  Terminals are words.
•  Penn Treebank non-terminal set has 2 disjoint subsets:

•  Pre-terminal (POS) tags rewrite to exactly 1 word.
•  The rest never have terminals as children.

Computational Linguistics 1 15

Parse Tree, of speech

Computational Linguistics 1 16

from Switchboard Corpus

Probabilistic CFGs (PCFGs)
•  A PCFG is a CFG with a probability assigned to each rule:

P(S → NP VP) = P(rhs = (NP VP) | lhs = S)

 = P(NP VP | S)

•  Joint probability of the right-hand side (RHS) can be
decomposed using the chain rule:

P(S → NP VP) = P(NP | S)∗P(VP | S,NP) ∗

 P(</r> | S, NP VP)

where </r> is an "end-of-rule" symbol

•  Standard PCFG induction approach
•  Count the number of times rules (local trees) occur
•  Use relative frequency estimation for conditional probabilities

Computational Linguistics 1 17

CFG Equivalence
•  Two CFGs G and G′ are strongly equivalent if they de-

scribe the same language, and they produce identical
trees for strings, modulo node labels

•  Two CFGs G and G′ are weakly equivalent if they
describe the same language

• Sometimes a grammar G can be transformed to a weakly
equivalent grammar G′ that has some beneficial
computational properties

Computational Linguistics 1 18

4

Normal Forms
• Chomsky Normal Form (CNF)

•  A grammar G = (V,T,P,S†) is in CNF if all productions in P are in one
of two forms:

•  A → BC where A, B, C ∈ V or
•  A → a where A ∈ V and a ∈ T

• Greibach Normal Form (GNF)
•  A grammar G = (V,T,P,S†) is in GNF if all productions in P are of the

following form:
•  A → a X where A ∈ V, a ∈ T and X ∈ V∗

• Every CFG G has weakly equivalent CFGs in CNF or GNF
•  Chomsky Normal Form very useful for chart parsing

Computational Linguistics 1 19

Grammar Factorization
•  Take a rule from the grammar such as

 NP → DT JJ NN NNS
and factor it into multiple rules

•  Left factorization:
•  NP → DT NP-DT
•  NP-DT → JJ NP-DT,JJ
•  NP-DT,JJ → NN NNS

• Right factorization:
•  NP → DT-JJ-NN NNS
•  DT-JJ-NN → DT-JJ NN
•  DT-JJ → DT JJ

Computational Linguistics 1 20

Penn Treebank CNF
• Disjoint pre-terminal set, so all POS → word productions

already in CNF
•  Left or right factorization removes productions with > 2

RHS categories
• Remaining issues:

•  Remove empty categories (0 categories on RHS)
•  Collapse unary productions (1 non-terminal on RHS)

remove production A → B then do the following:

Computational Linguistics 1 21

PCFG Induction and Factorization
• Original CFG rules:

•  Left factorization:

Computational Linguistics 1 22

PCFG Induction and Factorization
• Right factorization

• Collapsed unary productions

Computational Linguistics 1 23

Sparsity
• We may observe in our corpus the following rule:

NP → DT JJ JJ NN NN NNS
• We may not observe:

NP → DT JJ JJ JJ NN NN NNS
• Does this mean that the second rule should have zero

probability?
• A “Markov” grammar is a factored grammar that provides

probability mass to unobserved rules

Computational Linguistics 1 24

5

Left Factorization & “Markov” Grammars
•  Take a rule from the grammar such as

NP → DT JJ NN NNS
•  Left factorization:

•  NP → DT NP-DT
•  NP-DT → JJ NP-DT,JJ
•  NP-DT,JJ → NN NNS

• Markov grammar, order 1:
•  NP → DT NP-DT
•  NP-DT → JJ NP-JJ
•  NP-JJ → NN NP-NN
•  NP-NN → NN

Computational Linguistics 1 25

"forget" that we saw a DT

Agenda: Summary
• Questions, comments, concerns?
• Context-Free Grammars

•  Treebanks
•  Inducing CFGs from trees
•  Probabilistic CFGs

• Next week: parsing algorithms

26 Computational Linguistics 1

