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Agenda 
• Questions, comments, concerns? 
• Context-Free Grammars 

•  Treebanks 
•  Inducing CFGs from trees 
•  Probabilistic CFGs 

• Next week: parsing algorithms 
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Treebanks 
•  Treebanks are corpora in which each sentence has been 

paired with a parse tree 
•  Hopefully the right one! 

• Encodes a particular grammatical framework 
•  These are generally created: 

•  By first parsing the collection with an automatic parser 
•  And then having human annotators correct each parse as 

necessary 
• But… 

•  Detailed annotation guidelines are needed 
•  Explicit instructions for dealing with particular constructions 
•  Difficult, but essential, to ensure consistency 

• Starting point for a data-driven approach  
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Penn Treebank 
• Penn TreeBank is a widely used treebank 

•  1 million words from the Wall Street Journal 
•  “Least-common denominator” syntactic annotation, 

i.e.relatively theory-neutral 

•  Treebanks implicitly define a grammar for the language 

Computational Linguistics 1 4 

Penn Treebank: Example 
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Treebank Grammars 
• Such grammars tend to be very flat 

•  Recursion avoided to ease annotators burden 
•  Sometimes criticized for being so flat, e.g., 

(NP (NN system) (NN analyst) (NN arbitration) (NN chef)) 

• Penn Treebank has 4500 different rules for VPs, 
including… 
•  VP → VBD PP 
•  VP → VBD PP PP 
•  VP → VBD PP PP PP 
•  VP → VBD PP PP PP PP 
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Penn WSJ Non-Terminals (NTs) 
• Basic non-terminal tagset (not including pre-terminals) 

• Other “function” tags may label constituents, e.g. PP-TMP 
means temporal PP 

• Raw treebank contains empty categories 
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Why treebanks? 
•  Treebanks are critical to training statistical parsers 
• Also valuable to linguist when investigating phenomena 
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Grammar Induction 
• Extract context-free rules from trees in the treebank 
• Context-free rules of the form: 

A → B C D E 
•  where A is the (one and only) 'parent' 
•  and B, C, D, and E are the 'children' 
•  also refer to left-hand side (LHS): A 

and right-hand side (RHS): B C D E 
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CFG Induction 

 
•  Local tree: Parent (S), children (NP VP) 
• Each local tree represents a context-free rule: 

S → NP VP 
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Interpretations of a CFG rule 
•  For a rule such as S → NP VP, there are various 

interpretations of what this means 
• Derivations: 

•  An NP and a VP can combine (or compose) to produce an S 
•  An S can be split into an NP followed by a VP 

•  Trees: 
•  An S node can generate an NP and a VP node 
•  An S node can be the parent of an NP and a VP node 
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Derivations 
•  If we have a rule A → α, then define a derives relation: βAγ ⇒ βαγ. 
•  A string w1...wn is in the language of a CFG G if S† ⇒∗ w1...wn 

•  For example, consider these noun compounding rules:  
(i) N → N N (ii) N → dog (iii) N → food (iv) N → can 

•  There are many possible derivations, s.t. N ⇒∗dog food can  
1.  N ⇒ N N ⇒ N can ⇒ N N can ⇒ N food can ⇒ dog food can 
2.  N ⇒ N N ⇒ N N N ⇒ N N can ⇒ N food can ⇒ dog food can  
3.  N ⇒ N N ⇒ N N N ⇒ dog N N ⇒ dog food N ⇒ dog food can  
4.  N ⇒ N N ⇒ dog N ⇒ dog N N ⇒ dog food N ⇒ dog food can  
5.  . . . 

•  Derivation 1. is the rightmost derivation, always expanding the 
rightmost non-terminal; derivation 4. is a leftmost derivation 
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Pushdown automata 
• Consider the leftmost derivation:  

N ⇒ N N ⇒ dog N ⇒ dog N N ⇒ dog food N ⇒ dog food can 

• We can represent this as an automaton, with a stack at 
each state: 

 
• Generally cannot be represented with finite-state 

automaton 
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Parse Tree, Derivation 
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Labeled Bracketing 
• Another representation of the same tree: 

 
(S (NP (PRP we)) (VP (VBD helped) (NP (PRP her))  
                                    (VP (VB paint) (NP (DT the) (NN house))))) 

• Some terminology (review): 
•  Terminals are words.  
•  Penn Treebank non-terminal set has 2 disjoint subsets: 

•  Pre-terminal (POS) tags rewrite to exactly 1 word. 
•  The rest never have terminals as children. 
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Parse Tree, of speech 
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from Switchboard Corpus 

Probabilistic CFGs (PCFGs) 
•  A PCFG is a CFG with a probability assigned to each rule: 

 
P(S → NP VP)  = P(rhs = (NP VP) | lhs = S)  

 = P(NP VP | S) 
 

•  Joint probability of the right-hand side (RHS) can be 
decomposed using the chain rule: 
 
P(S → NP VP) =  P(NP | S)∗P(VP | S,NP) ∗  

 P(</r> | S, NP VP) 
 
where </r> is an "end-of-rule" symbol 

•  Standard PCFG induction approach 
•  Count the number of times rules (local trees) occur 
•  Use relative frequency estimation for conditional probabilities 
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CFG Equivalence 
•  Two CFGs G and G′ are strongly equivalent if they de- 

scribe the same language, and they produce identical 
trees for strings, modulo node labels 

•  Two CFGs G and G′ are weakly equivalent if they 
describe the same language 

• Sometimes a grammar G can be transformed to a weakly 
equivalent grammar G′ that has some beneficial 
computational properties 
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Normal Forms 
• Chomsky Normal Form (CNF) 

•  A grammar G = (V,T,P,S†) is in CNF if all productions in P are in one 
of two forms:  

•  A → BC  where A, B, C ∈ V    or 
•  A → a  where A ∈ V and a ∈ T 

• Greibach Normal Form (GNF) 
•  A grammar G = (V,T,P,S†) is in GNF if all productions in P are of the 

following form: 
•  A → a X  where A ∈ V, a ∈ T and X ∈ V∗ 

• Every CFG G has weakly equivalent CFGs in CNF or GNF 
•  Chomsky Normal Form very useful for chart parsing 
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Grammar Factorization 
•  Take a rule from the grammar such as 

 NP → DT JJ NN NNS 
and factor it into multiple rules 

•  Left factorization: 
•  NP → DT NP-DT  
•  NP-DT → JJ NP-DT,JJ  
•  NP-DT,JJ → NN NNS 

• Right factorization: 
•  NP → DT-JJ-NN NNS  
•  DT-JJ-NN → DT-JJ NN  
•  DT-JJ → DT JJ 
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Penn Treebank CNF 
• Disjoint pre-terminal set, so all POS → word productions 

already in CNF 
•  Left or right factorization removes productions with > 2 

RHS categories 
• Remaining issues: 

•  Remove empty categories (0 categories on RHS) 
•  Collapse unary productions (1 non-terminal on RHS) 

remove production A → B  then do the following: 
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PCFG Induction and Factorization 
• Original CFG rules: 

•  Left factorization: 
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PCFG Induction and Factorization 
• Right factorization 

• Collapsed unary productions 
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Sparsity 
• We may observe in our corpus the following rule:  

NP → DT JJ JJ NN NN NNS 
• We may not observe:  

NP → DT JJ JJ JJ NN NN NNS 
• Does this mean that the second rule should have zero 

probability? 
• A “Markov” grammar is a factored grammar that provides 

probability mass to unobserved rules 
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Left Factorization & “Markov” Grammars 
•  Take a rule from the grammar such as  

NP → DT JJ NN NNS 
•  Left factorization: 

•  NP → DT NP-DT  
•  NP-DT → JJ NP-DT,JJ  
•  NP-DT,JJ → NN NNS 

• Markov grammar, order 1: 
•  NP → DT NP-DT  
•  NP-DT → JJ NP-JJ  
•  NP-JJ → NN NP-NN  
•  NP-NN → NN 
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"forget" that we saw a DT 

Agenda: Summary 
• Questions, comments, concerns? 
• Context-Free Grammars 

•  Treebanks 
•  Inducing CFGs from trees 
•  Probabilistic CFGs 

• Next week: parsing algorithms 
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