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Treebanks

« Treebanks are corpora in which each sentence has been
paired with a parse tree

« Hopefully the right one!
+ Encodes a particular grammatical framework
« These are generally created:
- By first parsing the collection with an automatic parser

- And then having human annotators correct each parse as
necessary

- But...
« Detailed annotation guidelines are needed
- Explicit instructions for dealing with particular constructions
- Difficult, but essential, to ensure consistency

- Starting point for a data-driven approach
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Penn Treebank: Example
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(NP-SBJ-1 (PR We) )
(VP (MD would)
(VP (VB have)
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(NP-SBJ (-NONE- #-1) )
(VP (TO to)
(VP (VB wait)
(SBAR-TMP (IN until)
(s
(NP-SBJ (PRP we) )
(VP (VBP have)
(VP (VBN collected)
(PP-CLR (IN on)
(NP (DT those) (NNS assets)))))))))))))
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(NP-SBJ (PRP he) )
(VP (VBD said)
(S (-NONE- #Tx-2) ))
)
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Agenda

» Questions, comments, concerns?
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Penn Treebank

- Penn TreeBank is a widely used treebank
« 1 million words from the Wall Street Journal
« “Least-common denominator” syntactic annotation,
i.e.relatively theory-neutral

« Treebanks implicitly define a grammar for the language
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Treebank Grammars

+ Such grammars tend to be very flat

- Recursion avoided to ease annotators burden

- Sometimes criticized for being so flat, e.g.,

(NP (NN system) (NN analyst) (NN arbitration) (NN chef))

« Penn Treebank has 4500 different rules for VPs,

including...

- VP — VBD PP

- VP — VBD PP PP

- VP — VBD PP PP PP

- VP — VBD PP PP PP PP
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Penn WSJ Non-Terminals (NTs)

« Basic non-terminal tagset (not including pre-terminals)

ADJP Adjective Phrase ADVP  Adverbial Phrase CONIJP Conjunction Phrase
FRAG Fragment INTJ Interjection LST List marker

NAC Not a Consti | NP Noun Phrase NX Complex NP

PP Prepositional Phrase PRN Parenthetical PRT Particle

QP Quantifier Phrase RRC Reduced Relative Clause N Simple Clause
SBAR Subordinate Clause SBARQ Subordinate Question Clause | SINV  Inverted Clause

SQ Inverted Question ucp Unlike Coordinated Phrase | VP Verb Phrase
WHADIP Wh-adjective Phrase WHAVP Wh-adverb Phrase WHNP Wh-noun Phrase
WHPP ‘Wh-prepositional Phrase | X Unknown

« Other “function” tags may label constituents, e.g. PP-TMP
means temporal PP

+ Raw treebank contains empty categories
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Grammar Induction

« Extract context-free rules from trees in the treebank
- Context-free rules of the form:

A—-BCDE

- where A is the (one and only) 'parent

- and B, C, D, and E are the 'children’

- also refer to left-hand side (LHS): A
and right-hand side (RHS): BC D E
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Interpretations of a CFG rule

« For a rule such as S — NP VP, there are various
interpretations of what this means

« Derivations:
- An NP and a VP can combine (or compose) to produce an S
« An S can be split into an NP followed by a VP

. Trees:
- An S node can generate an NP and a VP node
- An S node can be the parent of an NP and a VP node
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I
Why treebanks?

« Treebanks are critical to training statistical parsers
« Also valuable to linguist when investigating phenomena
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I
CFG Induction

S

NP VP
« Local tree: Parent (S), children (NP VP)

 Each local tree represents a context-free rule:
S — NP VP
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Derivations

- If we have a rule A — q, then define a derives relation: BAy = Bay.
« Astring w,...w,, is in the language of a CFG G if St =* w,..w,
- For example, consider these noun compounding rules:

(i) N — N N (ii) N — dog (iii) N — food (iv) N — can
- There are many possible derivations, s.t. N =*dog food can

1. N=NN= Ncan= NN can = N food can = dog food can
N=NN=NNN = NN can = N food can = dog food can
N=NN= NNN = dog NN = dog food N = dog food can
N = NN = dog N = dog N N = dog food N = dog food can

Eal i

5.

- Derivation 1. is the rightmost derivation, always expanding the
rightmost non-terminal; derivation 4. is a leftmost derivation
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Pushdown automata

« Consider the leftmost derivation:
N = NN = dog N = dog N N = dog food N = dog food can

+ We can represent this as an automaton, with a stack at
each state:

OO ORGSO

« Generally cannot be represented with finite-state
automaton

Computational Linguistics 1 13

I
Labeled Bracketing

+ Another representation of the same tree:

(S (NP (PRP we)) (VP (VBD helped) (NP (PRP her))
(VP (VB paint) (NP (DT the) (NN house)))))

- Some terminology (review):
- Terminals are words.
- Penn Treebank non-terminal set has 2 disjoint subsets:
« Pre-terminal (POS) tags rewrite to exactly 1 word.
« The rest never have terminals as children.
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Probabilistic CFGs (PCFGs)

- APCFG is a CFG with a probability assigned to each rule:

(ths = (NP VP) | Ihs = S)

P(S — NPVP) =
=P(NPVP|S)

P

P

- Joint probability of the right-hand side (RHS) can be
decomposed using the chain rule:

P(S — NP VP) = P(NP | S):P(VP | S,NP)
P(</r>| S, NP VP)

where </r> is an "end-of-rule" symbol
- Standard PCFG induction approach

« Count the number of times rules (local trees) occur
- Use relative frequency estimation for conditional probabilities
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Parse Tree, Derivation

S leftmost derivation
_— T S — NP VP
N|P VP NP — PRP
PRP VBD NP VP PRP — we
| | | o~ VP — VBD NP VP
we helped PRP VB NP VBD — helped

\ N NP — PRP
her paint DT NN PRP — her
I | VP — VB NP
VB — paint
NP — DT NN
DT — the
NN — house
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the house

Parse Tree, of speech

T T T
for CD NNS we  AUX RB EDITED WHNP S
| | | |
two years. did n't S WDT VP
| T
cc NP which AUX EDITED ADJP
| |
and  PRP was. NP ADVP NN
I |
we DT RB RB stupid
[ |
a  kind of
from Switchboard Corpus
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I
CFG Equivalence

« Two CFGs G and G’ are strongly equivalent if they de-
scribe the same language, and they produce identical
trees for strings, modulo node labels

« Two CFGs G and G' are weakly equivalent if they
describe the same language

+ Sometimes a grammar G can be transformed to a weakly
equivalent grammar G’ that has some beneficial
computational properties
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Normal Forms

« Chomsky Normal Form (CNF)
« Agrammar G = (V,T,P,St) is in CNF if all productions in P are in one

of two forms:
-A—-BC whereA,B,C €V or
cA—a whereA€ Vanda €T

+ Greibach Normal Form (GNF)

« Agrammar G = (V,T,P,St) is in GNF if all productions in P are of the
following form:

+A—-aX whereAeV,aeTandX € Vxk
« Every CFG G has weakly equivalent CFGs in CNF or GNF

- Chomsky Normal Form very useful for chart parsing
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]
Penn Treebank CNF

« Disjoint pre-terminal set, so all POS — word productions
already in CNF

- Left or right factorization removes productions with > 2
RHS categories

+ Remaining issues:
- Remove empty categories (0 categories on RHS)

- Collapse unary productions (1 non-terminal on RHS)
remove production A— B then do the following:
Productions of the form Create new production

C—-XA C —> X A|B
C—-AX C— ABX
C—AA C — A|BA|B
B—a AB - «
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PCFG Induction and Factorization

- Right factorization
P(A— X;—...—X;; B) =P(A— X;...Xy, B)
PXi—. X > X1— . —Xp_1Xg) =1
« Collapsed unary productions
P(C - X AB) =P(C —» X A)«P(A — B)
P(C — A|IBX) =P(C - AX)*P(A— B)
P(A|B — a) = P(A— B)*P(B — a)
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Grammar Factorization

« Take a rule from the grammar such as
NP — DT JJ NN NNS

and factor it into multiple rules
« Left factorization:

+ NP — DT NP-DT

« NP-DT — JJ NP-DT,JJ

+ NP-DT,JJ — NN NNS
« Right factorization:

« NP — DT-JJ-NN NNS

+ DT-JJ-NN — DT-JJ NN

- DT-JJ - DT JJ
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PCFG Induction and Factorization

+ Original CFG rules:
C(A - a)
EAAV[’EP C(A - ,3)

- Left factorization:

f’(Agva) =

. > A-BacP C(A — Ba)
P(A— B A-B) = —%EV ’°>IC(A =5
A—BeP

R ZAﬂXkBtzEP C(A - XBa)
P(A-X - B A—X-B) = oVt k>1
EAAXﬂEP C(A — Xp)

C(A— X B D)
EAHXﬂeP C(A— XP)
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P(A-X - B D) =

e
Sparsity

- We may observe in our corpus the following rule:
NP — DT JJ JJ NN NN NNS

« We may not observe:
NP — DT JJ JJ JJ NN NN NNS

+ Does this mean that the second rule should have zero
probability?

+ A “Markov” grammar is a factored grammar that provides
probability mass to unobserved rules
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Left Factorization & “Markov” Grammars

« Take a rule from the grammar such as
NP — DT JJ NN NNS
- Left factorization:
« NP — DT NP-DT
« NP-DT — JJ NP-DT,JJ
« NP-DT,JJ — NN NNS
« Markov grammar, order 1:
« NP — DT NP-DT
« NP-DT — JJ NP-JJ "forget" that we saw a DT
+ NP-JJ — NN NP-NN
« NP-NN — NN
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e
Agenda: Summary

+ Next week: parsing algorithms
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