
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 16: 25 October 2011

Agenda
•  Jordan Boyd-Graber, on NLTK
•  Turn in your midterm!
• HW4 online tonight, due next Tuesday
• Questions, comments, concerns?
• Parsing algorithms

•  Top-down and bottom-up parsing
•  CKY parsing with CNF grammars
•  Earley parsing?

2 Computational Linguistics 1

Parsing
• Problem setup:

•  Input: string and a CFG
•  Output: parse tree assigning proper structure to input string

•  “Proper structure”
•  Tree that covers all and only words in the input
•  Tree is rooted at an S (or "TOP")
•  Derivations obey rules of the grammar
•  Usually, more than one parse tree…
•  Unfortunately, parsing algorithms don’t help in selecting the correct

tree from among all the possible trees

Computational Linguistics 1 3

Constituency: Nodes in a Parse Tree
• Notion of constituency is central to syntax, parsing

•  A sequence of words that behave as a unit

• Common test of constituency: movement
“we helped her paint the house”
“the house is what we helped her paint”
“paint the house is what we helped her do”
∗ “her paint the house is what we helped do”

• Syntactic structure is represented by labeled constituents

Computational Linguistics 1 4

Constituents in a Tree

Computational Linguistics 1 5

Parsing Algorithms
• Parsing is (surprise) a search problem
•  Two basic (= bad) algorithms:

•  Top-down search
•  Bottom-up search

•  Two “real” algorithms:
•  CKY parsing
•  Earley parsing

• Simplifying assumptions:
•  Morphological analysis is done
•  All the words are known

Computational Linguistics 1 6

2

Top-Down Search
• Observation: trees must be rooted with an S node
• Parsing strategy:

•  Start at top with an S node
•  Apply rules to build out trees
•  Work down toward leaves

Computational Linguistics 1 7

Top-Down Search

Computational Linguistics 1 8

Top-Down Search

Computational Linguistics 1 9

Top-Down Search

Computational Linguistics 1 10

Problems with top-down
• Ambiguity

•  Can follow just one path
•  Requires backtracking, rebuilding structure

•  Might keep all around in parallel
•  Exponential in the length of the string

•  Left-recursive grammars: NP → NP PP
•  Grammar transformation

• Probabilistic variants, with pruning, have been successful

Computational Linguistics 1 11

Probabilistic Top-Down Parsing
• Keep a heap of candidate derivations, each of which

follows a top-down search path
• Rank the analyses by some score, to work on the

promising ones early
• Pop the topmost ranked analysis from the heap, and

follow all top-down paths
• Push all new analyses onto the heap
• Collect successful parses and return the best one

Computational Linguistics 1 12

3

Bottom-Up Search
• Observation: trees must cover all input words
• Parsing strategy:

•  Start at the bottom with input words
•  Build structure based on grammar
•  Work up towards the root S

Computational Linguistics 1 13

Bottom-Up Search

Computational Linguistics 1 14

Bottom-Up Search

Computational Linguistics 1 15

Bottom-Up Search

Computational Linguistics 1 16

Bottom-Up Search

Computational Linguistics 1 17

Bottom-Up Search

Computational Linguistics 1 18

4

Top-Down vs Bottom-Up
•  Top-down search

•  Only searches valid trees
•  But, considers trees that are not consistent with any of the words
•  Left-recursive grammars lead to non-termination NP → NP PP
•  Non-determinism

• Bottom-up search
•  Only builds trees consistent with the input
•  But, considers trees that don’t lead anywhere

•  Without top-down guidance, can build a lot of structure that cannot be
integrated with rest of string

Computational Linguistics 1 19

Parsing as Search
• Search involves controlling choices in the search space:

•  Which node to focus on in building structure
•  Which grammar rule to apply

• General strategy: backtracking
•  Make a choice, if it works out then fine
•  If not, then back up and make a different choice

Computational Linguistics 1 20

Backtracking isn’t enough!
• Ambiguity
• Shared sub-problems

Computational Linguistics 1 21

Ambiguity

Or consider: I saw the man on the hill with the telescope.
Computational Linguistics 1 22

Shared Sub-Problems
• Observation: ambiguous parses still share sub-trees
• We don’t want to redo work that’s already been done
• Unfortunately, naïve backtracking leads to duplicate work

Computational Linguistics 1 23

Shared Sub-Problems: Example
• Example: “A flight from Indianapolis to Houston on TWA”
• Assume a top-down parse making choices among the

various nominal rules:
•  Nominal → Noun
•  Nominal → Nominal PP

• Statically choosing the rules in this order leads to lots of
extra work...

Computational Linguistics 1 24

5

Shared Sub-Problems: Example

Computational Linguistics 1 25

Efficient Parsing
• Dynamic programming to the rescue!
•  Intuition: store partial results in tables, thereby:

•  Avoiding repeated work on shared sub-problems
•  Efficiently storing ambiguous structures with shared sub-parts

•  Two algorithms:
•  CKY: roughly, bottom-up
•  Earley: roughly, top-down

Computational Linguistics 1 26

CYK Parsing
• Also referred to as "chart" parsing
• Related to Viterbi POS-tagging
• CKY parsing requires that the grammar consist of ε-free,

binary rules = Chomsky Normal Form
• What if my treebank (or CFG) isn’t in CNF?

Computational Linguistics 1 27

CKY Parsing: Intuition
• Consider the rule D → w

•  Terminal (word) forms a constituent
•  Trivial to apply

• Consider the rule A → B C
•  If there is an A somewhere in the input then there must be a B

followed by a C in the input
•  First, precisely define span [i, j]
•  If A spans from i to j in the input then there must be some k such

that i<k<j
•  Easy to apply: we just need to try different values for k

A

B C

i j

k

Computational Linguistics 1 28

Constituents and Spans

Computational Linguistics 1 29

Constituents as Labeled Spans

Computational Linguistics 1 30

6

Labeled Spans, No Unaries

Computational Linguistics 1 31

Labeled Spans in CNF

Computational Linguistics 1 32

Labeled Spans, No Lexical Items

Computational Linguistics 1 33

Chart Parsing, "Pseudocode"
•  Initialize a chart with POS-tags (span length 1)
•  For span length 2 to length of string

•  For all possible start and end points and all non-terminals
1.  Find the highest probability constituent with that label and span
2.  Keep a backtrace pointer

•  Find the best analysis spanning the whole string
• Use backtrace pointers to output best parse

Computational Linguistics 1 34

Labeled Spans, in CYK Chart

Computational Linguistics 1 35

PCFG Notation (Refresher)
A PCFG G = (V,T,P,S†,ρ) consists of
•  a set of non-terminal variables V
•  a set of terminals T
•  a set of rules P of the form A→α
•  a special start symbol S† ∈ V
•  a model ρ defining a conditional probability for every rule

in P

Computational Linguistics 1 36

7

CYK Algorithm (mod from SaLP)

Computational Linguistics 1 37

Example CYK Parse
• Grammar G = (V, T, P, S†, ρ)
• V = {NP, NN} T = {systems,analyst,arbitration,chef}
• Rules and Probabilities:

•  P(S† →NP)=1.0
•  P(NP → NN NN) = 0.5
•  P(NP → NP NN) = 0.3
•  P(NP → NN NP) = 0.1
•  P(NP → NP NP) = 0.1

Input string: systems analyst arbitration chef
Tag string: NN NN NN NN

Computational Linguistics 1 38

Chart, initialize (span 1)

Computational Linguistics 1 39

Chart, span 2

Computational Linguistics 1 40

CYK, nitty-gritty

Computational Linguistics 1 41

Chart, span 3, midpoint 1

Computational Linguistics 1 42

8

Chart, span 3, midpoint 2

Computational Linguistics 1 43

Chart, span 3, midpoint 2

Computational Linguistics 1 44

Chart, span 3, midpoint 3

Computational Linguistics 1 45

Chart, span 4, midpoint 1

Computational Linguistics 1 46

Chart, span 4, midpoint 2

Computational Linguistics 1 47

Chart, span 4, midpoint 3

Computational Linguistics 1 48

9

Chart, final backtrace

Computational Linguistics 1 49

CYK Parsing Observations
• Dynamic programming like Viterbi tagging
• Other similarities apply:

•  Can calculate string probability, not just max
•  Also an EM similarity, like forward-backward, known as the

Inside-Outside algorithm
•  Calculate the Inside probability of a constituent

(like the forward probability)
•  Calculate the Outside probability of a constituent

(like the backward probability)

Computational Linguistics 1 50

CYK Parsing: Input/Output
• CYK parsing assumes CNF grammar
• When outputting the parse to the user, need to map back

to original grammar (also for evaluation)
(NP (DT the) (NP-DT (JJ ugly) (NP-DT-JJ (JJ green) (NN duck))))
(NP (DT the) (JJ ugly) (JJ green) (NN duck))

• More generally, internal grammar representation for
parsing will be distinct from external representation

• Grammar/tree transformation will be a recurring theme

Computational Linguistics 1 51

Agenda
•  Turn in your midterm!
• HW4 online tonight, due next Tuesday
• Parsing algorithms

•  Top-down and bottom-up parsing
•  CKY parsing with CNF grammars

• No class on Thursday!

53 Computational Linguistics 1

