Computational Linguistics 1 CMSC/LING 723, LBSC 744

_____, ____, ____,

Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland

Lecture 16: 25 October 2011

Agenda

- Jordan Boyd-Graber, on NLTK
- Turn in your midterm!
- HW4 online tonight, due next Tuesday
- Questions, comments, concerns?
- Parsing algorithms
- Top-down and bottom-up parsing
- CKY parsing with CNF grammars
- Earley parsing?

Computational Linguistics 1

Parsing

- Problem setup:
 - · Input: string and a CFG
 - · Output: parse tree assigning proper structure to input string
- "Proper structure"
- · Tree that covers all and only words in the input
- Tree is rooted at an S (or "TOP")
- · Derivations obey rules of the grammar
- Usually, more than one parse tree...
- Unfortunately, parsing algorithms don't help in selecting the correct tree from among all the possible trees

Computational Linguistics 1

- Notion of *constituency* is central to syntax, parsing
 A sequence of words that behave as a unit
- Common test of constituency: movement "we helped her paint the house" "the house is what we helped her paint" "paint the house is what we helped her do" * "her paint the house is what we helped do"
- · Syntactic structure is represented by labeled constituents

omputational Linguistics 1

Top-Down Search

- Observation: trees must be rooted with an S node
 Parsing strategy:
- Start at top with an S node

Computational Linguistics 1

- Apply rules to build out trees
- Work down toward leaves

S

Problems with top-down

Ambiguity

- Can follow just one path
- Requires backtracking, rebuilding structure
- Might keep all around in parallel
- Exponential in the length of the string
- Left-recursive grammars: NP \rightarrow NP PP
- Grammar transformation
- ${\boldsymbol{\cdot}}$ Probabilistic variants, with pruning, have been successful

Computational Linguistics 1

Probabilistic Top-Down Parsing

- Keep a heap of candidate derivations, each of which follows a top-down search path
- Rank the analyses by some score, to work on the promising ones early
- Pop the topmost ranked analysis from the heap, and follow all top-down paths
- Push all new analyses onto the heap
- Collect successful parses and return the best one

Computational Linguistics 1

2

Bottom-Up Search

- Observation: trees must cover all input words
- Parsing strategy:

Computational Linguistics 1

- Start at the bottom with input words
- Build structure based on grammar
- $\boldsymbol{\cdot}$ Work up towards the root S

Bottom-Up Search Jock that flight

Bottom-Up Search	1	
Book t	hat flight	
Noun Det Noun Book that flight	Verb Det Noun Book that flight	
Nominal Nominal Nom Det Nom Book that fight	Nominal Vorb Det Nom I II Book that Right	
Computational Linguistics 1		16

Top-Down vs Bottom-Up

- Top-down search
- Only searches valid trees
- But, considers trees that are not consistent with any of the words
- Left-recursive grammars lead to non-termination $\mathsf{NP} \to \mathsf{NP} \ \mathsf{PP}$
- Non-determinism
- · Bottom-up search
- · Only builds trees consistent with the input
- · But, considers trees that don't lead anywhere
- · Without top-down guidance, can build a lot of structure that cannot be integrated with rest of string

Parsing as Search

- Search involves controlling choices in the search space: · Which node to focus on in building structure · Which grammar rule to apply

Computational Linguistics 1

- · General strategy: backtracking · Make a choice, if it works out then fine
- · If not, then back up and make a different choice

Computational Linguistics 1

Backtracking isn't enough!

Ambiguity

Computational Linguistics

Shared sub-problems

Shared Sub-Problems

- Observation: ambiguous parses still share sub-trees
- · We don't want to redo work that's already been done
- Unfortunately, naïve backtracking leads to duplicate work

Example: "A flight from Indianapolis to Houston on TWA"

- Assume a top-down parse making choices among the
- various nominal rules:

Computational Linguistics 1

- $\bullet \text{ Nominal} \to \text{Noun}$ - Nominal \rightarrow Nominal PP
- · Statically choosing the rules in this order leads to lots of extra work ...

Computational Linguistics 1

4

CYK Algorithm (mod from SaLP)

Inp	but: tag sequence $ au(1)\ldots au(n)$, PCFG $G=(V,T,P,S^{\dagger}, ho), V =k$
ini	tialize $\pi[i,j,A] \leftarrow 0$ for all i,j and $A \in V$
for	i = 1 to n
	$\pi[i\text{-}1,i,\tau(i)] \gets 1$
for	s = 2 to n
	for $b=0$ to n - s
	for $m = b$ +1 to b + s -1
	for all $A, B, C \in V$ such that $A \to BC \in P$
	$p \leftarrow \pi[b,m,B] * \pi[m,b{+}s] * \mathrm{P}(A ightarrow BC)$
	if $(p > \pi[b, b{+}s, A])$ then
	$\pi[b,b{+}s,A] \gets p$
	$\zeta[b,b{+}s,A] \gets \{m,B,C\}$
\hat{S}	$\leftarrow \operatorname{argmax}_{A \in V} \pi[0, n, A] * \operatorname{P}(S^{\dagger} o A)$
bac	cktrace from the root \hat{S} to find maximum likelihood tree
ational I	inquistics 1

	ro, map		
(NP, 0.05, 1, NN, NP) (NP, 0.15, 2, NP, NN)			
(NP, 0.5, 1, NN, NN)	(NP, 0.5, 2, NN, NN)	(NP, 0.5, 3, NN, NN)	
NN	NN	NN	NN

Chart, final backtrace								
Span	I							
4	(NP, 0.045, 3, NP, NN)							
3	(NP, 0.15, 2, NP, NN)	(NP, 0.15, 3, NP, NN)						
2	(NP, 0.5, 1, NN, NN)	(NP, 0.5, 2, NN, NN)	(NP, 0.5, 3, NN, NN)					
1	NN	NN	NN	NN				
Ŝ	$\hat{S} = NP$ (TOP (NP (NP (NP (NN systems) (NN analyst)) (NN arbitration)) (NN chef)))							
Computati	onal Linguistics 1				49			

CYK Parsing: Input/Output

- CYK parsing assumes CNF grammar
- When outputting the parse to the user, need to map back to original grammar (also for evaluation) (NP (DT the) (NP-DT (JJ ugly) (NP-DT-JJ (JJ green) (NN duck))))
- (NP (DT the) (JJ ugly) (JJ green) (NN duck))
 More generally, internal grammar representation for parsing will be distinct from external representation
- Grammar/tree transformation will be a recurring theme

Computational Linguistics 1

Agenda

- Turn in your midterm!
- HW4 online tonight, due next Tuesday
- Parsing algorithms
- Top-down and bottom-up parsingCKY parsing with CNF grammars
- No class on Thursday!

omputational Linguistics 1