
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 17: 1 November 2011

Agenda
• HW4, due Thursday
• Questions, comments, concerns?
• Parsing algorithms

•  Left-corner grammar transformation
•  Earley parsing

• Context-sensitive grammar formalisms?

2 Computational Linguistics 1

Parse Tree, Derivation

Computational Linguistics 1 3

Parse Tree, CNF

Computational Linguistics 1 4

CYK Chart, span 4, midpoint 3

Computational Linguistics 1 5

Top-down, Bottom-up, Left-corner

Computational Linguistics 1 6

(slide adapted from Mark Johnson)

2

Top-down, Bottom-up, Left-corner

Computational Linguistics 1 7

Intuitive?

(slide adapted from Mark Johnson)

Top-down, Bottom-up, Left-corner

Computational Linguistics 1 8

(slide adapted from Mark Johnson)

Top-down, Bottom-up, Left-corner

Computational Linguistics 1 9

Intuitive?

(slide adapted from Mark Johnson)

Left-corner Parsing
•  The left corner of a context-free rule is the first symbol on

the right hand side:
S → NP VP: left corner is NP.

•  The left-corner of each production is recognized bottom-
up, and everything else is predicted top-down

Computational Linguistics 1 10

Top-down, Bottom-up, Left-corner

Computational Linguistics 1 11

(slide adapted from Mark Johnson)

Top-down, Bottom-up, Left-corner

Computational Linguistics 1 12

Intuitive?

(slide adapted from Mark Johnson)

3

Top-down, Bottom-up, Left-corner

•  Top-down:
•  Right-recursive grammars require finite state size
•  But left-recursive grammars require unbounded state size

•  Left-corner
•  Finite-state size for both left-recursive and right-recursive grammars
•  Only center-embedded structures require unbounded stacks

Computational Linguistics 1 13

(slide adapted from Mark Johnson)

Top-down, Bottom-up, Left-corner
•  Top-down:

•  Right-recursive grammars require finite state size
•  But left-recursive grammars require unbounded state size

•  Left-corner
•  Finite-state size for both left-recursive and right-recursive grammars
•  Only center-embedded structures require unbounded stacks
•  ...which emulates human behavior!

•  From
[Resnik, 1992]:

Computational Linguistics 1 14

Building a Left-corner Parser?
• Perform a left-corner transform on grammar G,

then can use a top-down parser
•  because the LC-transform converts left-recursion into

right-recursion

Computational Linguistics 1 15

Left-corner Grammar Transform
• A → aA-a for all A∈V , a ∈ T
• A → A-C for all A∈V , C → ε ∈ P
• A-X→βA-B for all A∈V , B→Xβ∈P
• A-A → ε for all A∈V

• After transforming the grammar, do ... what?

Computational Linguistics 1 16

CYK!

Agenda
• HW4, due Thursday
• Parsing algorithms

•  Left-corner grammar transform
•  Earley parsing

• Context-sensitive grammar formalisms

17 Computational Linguistics 1

CKY: Analysis
• Since it’s bottom up, CKY populates the table with a lot of

“phantom constituents”
•  Spans that are constituents, but cannot really occur in the context

in which they are suggested

• Conversion of grammar to CNF adds additional non-
terminal nodes
•  Leads to weak equivalence wrt original grammar
•  Additional terminal nodes not (linguistically) meaningful: but can be

cleaned up with post processing

•  Is there a parsing algorithm for arbitrary CFGs that
combines dynamic programming and top-down control?

Computational Linguistics 1 18

4

Earley Parsing Algorithm
• One advantage of top-down over bottom-up is that one

never builds constituents that cannot be rooted
• Earley parsing motivation

•  Only want to build categories that can be rooted
•  Use a top-down filter
•  Use a chart parsing approach

• Dynamic programming algorithm (surprise)
• Allows arbitrary CFGs
•  Fills a chart in a single sweep over the input

Computational Linguistics 1 19

Earley Parsing: Chart, States
• Chart is an array of length N + 1,

where N = number of words
• Chart entries represent states:

•  Completed constituents and their locations
•  In-progress constituents
•  Predicted constituents

• Each state contains three items of information:
•  A grammar rule
•  Information about progress made in completing the sub-tree

represented by the rule
•  Span of the sub-tree

Computational Linguistics 1 20

Chart Entries: State Examples
• S → • VP [0,0]

•  A VP is predicted at the start of the sentence

• NP → Det • Nominal [1,2]
•  An NP is in progress; the Det goes from 1 to 2

• VP → V NP • [0,3]
•  A VP has been found starting at 0 and ending at 3

Computational Linguistics 1 21

Earley in a nutshell
• Start by predicting S
• Step through chart:

•  New predicted states are created from current states
•  New incomplete states are created by advancing existing states as

new constituents are discovered
•  States are completed when rules are satisfied

•  Termination: look for S → α • [0, N]

Computational Linguistics 1 22

Earley Algorithm

Computational Linguistics 1 23

Earley Algorithm

Computational Linguistics 1 24

5

Earley Example
•  Input: Book that flight
• Desired end state: S → α • [0,3]

•  Meaning: S spanning from 0 to 3, completed rule

Computational Linguistics 1 25

Earley: Chart[0]

Note that given a grammar, these entries are the
same for all inputs; they can be pre-loaded…

Computational Linguistics 1 26

Earley: Chart[1]

Computational Linguistics 1 27

Earley: Chart[2] and Chart[3]

Computational Linguistics 1 28

Earley: Recovering the Parse
As with CKY, add backpointers…

Computational Linguistics 1 29

Earley: Efficiency
•  For such a simple example, there seems to be a lot of

useless stuff…
• Why?

Computational Linguistics 1 30

6

Back to Ambiguity
• Did we solve it?
• No: both CKY and Earley return multiple parse trees…

•  Plus: compact encoding with shared sub-trees
•  Plus: work deriving shared sub-trees is reused
•  Minus: neither algorithm tells us which parse is correct

Computational Linguistics 1 31

Ambiguity
• Why don’t humans usually encounter ambiguity?
• How can we improve our models?

Computational Linguistics 1 32

Agenda: Summary
• HW4, due Thursday
• Parsing algorithms

•  Earley parsing
•  Left-corner grammar transform

• Next time: context-sensitive grammar formalisms

33 Computational Linguistics 1

