Computational Linguistics 1
CMSC/LING 723, LBSC 744

RSI2 Kristy Hollingshead Seitz
o) Institute for Advanced Computer Studies
s University of Maryland

oF

s

AR
S
TRy LN Lecture 17: 1 November 2011

Parse Tree, Derivation

T S — NP VP
N|P vP NP — PRP
] T
PRP VBD NP VP PRP — we
| | \ T~ VP — VBD NP VP
we helped PRP VB NP VBD — helped
\ [NP — PRP
her paint DT NN PRP —> her
the house VP VBNP
VB — paint
NP — DT NN
DT — the
NN — house
Computational Linguistics 1 3

|
CYK Chart, span 4, midpoint 3

Span

(NP,0.015, 1,NN, NP)
4 | (NP,0.025,2,NP,NP)
(NP, 0.045, 3, NP, NN)

3 | (NP,0.15,2,NP,NN) | (NP,0.15,3,NP,NN)

2 | (NP,0.5,1,NN,NN) | (NP,0.5,2,NN,NN) | (NP,0.5,3,NN,NN)

1 NN NN NN NN

Computational Linguistics 1 5

|
Agenda

+ HW4, due Thursday
 Questions, comments, concerns?

Computational Linguistics 1 2

I
Parse Tree, CNF

S
/\
PRP VP
| T T
we VBD VP-VBD
/\

|
helped PRP VP

\
constituents: her VB NP
(5,0,6) | PN
(PRP0,1) (VP,1,6) paint D‘T N‘N
(VBD,1,2) (VP-VBD226) the house
(PRP2.3) (VP3,6)
(VB34) (NP4,6)
(DT4,5) (NN,5.,6)
Computational Linguistics 1 4

Top-down, Bottom-up, Left-corner

s (slide adapted from Mark Johnson)

\(‘np = vp

/7
/\ \&/%
np.__»n v s

N

rupert friend knows ‘np—=vp

q
Top-down rupert “/

snores

Computational Linguistics 1 6

Top-down, Bottom-up, Left-corner
(slide adapted from Mark Johnson)
S
np/\vp Intuitive?
np n v s\
rupert friend knows np vp
Top-down rupert ‘_’
snores
Computational Linguistics 1 7

Top-down, Bottom-up, Left-corner

(slide adapted from Mark Johnson)
S

ni; ’ . \,p Intuitive?

2N

np n v S

rupert friend knows np vp
Bottom-up rupert V

snores

Computational Linguistics 1 9

Top-down, Bottom-up, Left-corner

s (slide adapted from Mark Johnson)

) p/\p

rupert friend knows np/ k\v|p

Left-corner rupert ‘|

snores

Computational Linguistics 1 1

Top-down, Bottom-up, Left-corner

s x (slide adapted from Mark Johnson)

n’p — n
rupert fnend knovku[p\ Ip

Tt
Bottom-up rupe V

snores

Computational Linguistics 1 8

Left-corner Parsing

+ The left corner of a context-free rule is the first symbol on
the right hand side:
S — NP VP: left corner is NP.

« The left-corner of each production is recognized bottom-
up, and everything else is predicted top-down

Computational Linguistics 1 10

Top-down, Bottom-up, Left-corner

(slide adapted from Mark Johnson)
S

/\

np vp
/\ /\
n‘p X‘l \|, S

rupert friend knows nb vp

Intuitive?

rupert v
Left-corner I :

snores

Computational Linguistics 1 12

Top-down, Bottom-up, Left-corner

(slide adapted from Mark Johnson)

- s~ s
, A=
- ST e
~np np Vb n) I vp
P . R R /;{ RPN
E SN . " . AN)N
b - Pt = s AN g
/ P
[[N [N [27 AN
rupert friend knows 'np—=vp rupert friend knows ‘npy v N rupert friend knows Hp’(vp
| \ Nk
Top-down "PeTtY Bottom-up P ”‘ Left-corner TP Y
snores suores snores
« Top-down:

« Right-recursive grammars require finite state size
- But left-recursive grammars require unbounded state size
- Left-corner
- Finite-state size for both left-recursive and right-recursive grammars
- Only center-embedded structures require unbounded stacks

Computational Linguistics 1

Building a Left-corner Parser?

+ Perform a left-corner transform on grammar G,
then can use a top-down parser

« because the LC-transform converts left-recursion into
right-recursion

S
s det s-det
o | P
np vp the n
PO ~ | /
det n v np professor vp
| | | N
the professor likes dct . v
e professor likes de n =re v vp-v
| | |
the cheese likes np vpvp
N
dét np-det
| N
the n np-np
|
cheese

Computational Linguistics 1

Agenda

- Earley parsing

Computational Linguistics 1

Top-down, Bottom-up, Left-corner

« Top-down:
- Right-recursive grammars require finite state size
- But left-recursive grammars require unbounded state size
- Left-corner
- Finite-state size for both left-recursive and right-recursive grammars
- Only center-embedded structures require unbounded stacks
« ...which emulates human behavior!

- From Strategy Space required |
[Resnik, 1992]: Left | Center | Right |
Top-down O(n) | O(n) | O(1)
Bottom-up O(1) | O(n) | O(n)
Left-corner’ o(1) | o(n) | 0(1)
What people do [O(1) [O(n) [O(1) |

Computational Linguistics 1

Left-corner Grammar Transform

+A—aA-a forall A€V ,aeT
+:A—A-C forallAeV,C—-c€P
+ A-X—BA-B forall A€V ,B->XBEP
+A-A—¢ forall A€V

- After transforming the grammar, do ... what?

CYK!

Computational Linguistics 1

CKY: Analysis

- Since it's bottom up, CKY populates the table with a lot of
“phantom constituents”

- Spans that are constituents, but cannot really occur in the context
in which they are suggested
+ Conversion of grammar to CNF adds additional non-
terminal nodes
- Leads to weak equivalence wrt original grammar
- Additional terminal nodes not (linguistically) meaningful: but can be
cleaned up with post processing
+ Is there a parsing algorithm for arbitrary CFGs that
combines dynamic programming and top-down control?

Computational Linguistics 1

Earley Parsing Algorithm

- One advantage of top-down over bottom-up is that one
never builds constituents that cannot be rooted

- Earley parsing motivation

- Only want to build categories that can be rooted
- Use a top-down filter

» Use a chart parsing approach
» Dynamic programming algorithm (surprise)
+ Allows arbitrary CFGs
- Fills a chart in a single sweep over the input

Computational Linguistics 1

Chart Entries: State Examples

+S —+VP[0,0]

- AVP is predicted at the start of the sentence
+ NP — Det « Nominal [1,2]

- An NP is in progress; the Det goes from 1 to 2
VP — V NP «[0,3]

- AVP has been found starting at 0 and ending at 3

Computational Linguistics 1 21

Earley Algorithm
function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE((y — o S. [0.0]),chart[0])
for i — from 0 to LENGTH(words) do
for each state in chart[i] do
if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then
PREDICTOR(state)
elseif INCOMPLETE?(state) and
NEXT-CAT(state) is a part of speech then
SCANNER(state)
else
COMPLETER(state)
end
end
return(chart)

Computational Linguistics 1

23

Earley Parsing: Chart, States

« Chart is an array of length N + 1,
where N = number of words
« Chart entries represent states:
- Completed constituents and their locations
- In-progress constituents
- Predicted constituents
« Each state contains three items of information:
» Agrammar rule

- Information about progress made in completing the sub-tree
represented by the rule

- Span of the sub-tree

Computational Linguistics 1 20

Earley in a nutshell

- Start by predicting S
« Step through chart:
- New predicted states are created from current states

- New incomplete states are created by advancing existing states as
new constituents are discovered

- States are completed when rules are satisfied
« Termination: look forS — a+[0, N]

Computational Linguistics 1

22

Earley Algorithm

procedure PREDICTOR((A — a ¢ B, [i. J])

for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do

ENQUEUE((B — e, [/, j]), chart[j])

end
procedure SCANNER((A — o ¢ B . [i. j]))

if B C PARTS-OF-SPEECH(word([j]) then

ENQUEUE((B — word|j], |, j+ 1)), chart[j+1])

procedure COMPLETER((B — 7 . [j.k])

for each (A — a e B B, [i, j]) in chart[j] do

ENQUEUE((A — a B e 3, [i,k]),chart[k])
end

Computational Linguistics 1

24

Earley Example

« Input: Book that flight
+ Desired end state: S — a + [0,3]
« Meaning: S spanning from 0 to 3, completed rule

Computational Linguistics 1 25

Earley: Chart[1]
S12 Verb — book e [0,1] Scanner
S13 VP — Verbe [0,1] Completer
S14 VP — Verb e NP [0,1] Completer
S15 VP — Verb e NP PP [0,1] Completer
S16 VP — Verbe PP [0,1] Completer
S17 S — VPe [0,1] Completer
S18 VP — VPePP [0,1] Completer
S19 NP — e Pronoun [1,1] Predictor
S20 NP — e Proper-Noun [1,1] Predictor
S21 NP — e Det Nominal [1.,1] Predictor
S22 PP — e Prep NP [1,1] Predictor
Computational Linguistics 1 27

Earley: Recovering the Parse
As with CKY, add backpointers...

Chart[1] S12 Verb — book [0.1] Scanner
Chart[2] S23 Det — that e [i%2] Scanner
Chart[3] S28 Noun — flight e [2.3] Scanner
529 Nominal — Noune [2,3] (S28)
S30 NP — Det Nominal ¢ [1,3] (523, S29)
S33 VP — Verhb NP « [0.3] (812, S30)
S36 S — VPe [0.3] (S33)

Computational Linguistics 1 29

Earley: Chart[0]
SO y — oS [0,0] Dummy start state
Si S — eNPVP [0,0] Predictor
S2 S — e Aux NP VP [0,0] Predictor
S3 S — VP [0,0] Predictor
S4 NP — e Pronoun [0,0] Predictor
S5 NP — e Proper-Noun [0,0] Predictor
S6 NP — e Det Nominal [0,0] Predictor
S7 VP — e Verb [0,0] Predictor
S8 VP — e Verb NP [0,0] Predictor
S9 VP — e Verb NP PP [0,0] Predictor
S10 VP — e Verb PP [0,0] Predictor
S11 VP — VP PP [0,0] Predictor
Note that given a grammar, these entries are the
same for all inputs; they can be pre-loaded...
Computational Linguistics 1 26

Earley: Chart[2] and Chart[3]
S23 Det — that e [1,2] Scanner
S24 NP — Det e Nominal [1,2] Completer
S25 Nominal — e Noun [2,2] Predictor
S26 Nominal — e Nominal Noun [2,2] Predictor
S27 Nominal — e Nominal PP [2,2] Predictor
S28 Noun — flight e [2.3] Scanner
S29 Nominal — Noun e [2,3] Completer
S30 NP — Det Nominal o [1,3] Completer
S31 Nominal — Nominal e Noun [2,3] Completer
S32 Nominal — Nominal e PP [2,3] Completer
S33 VP — Verb NP e [0,3] Completer
S34 VP — Verb NP e PP [0,3] Completer
S35 PP — e Prep NP [3.3] Predictor
S36 S — VPe [0,3] Completer
S37 VP — VP e PP [0,3] Completer
Computational Linguistics 1 28

e
Earley: Efficiency

« For such a simple example, there seems to be a lot of
useless stuff...

+ Why?

Computational Linguistics 1 30

I
Back to Ambiguity

Ambiguity
+ Did we solve it?

+ No: both CKY and Earley return multiple parse trees...
« Plus: compact encoding with shared sub-trees
« Plus: work deriving shared sub-trees is reused
« Minus: neither algorithm tells us which parse is correct

+ Why don’t humans usually encounter ambiguity?
+ How can we improve our models?

Computational Linguistics 1

3

Computational Linguistics 1

32

Agenda: Summary

« HW4, due Thursday
« Parsing algorithms
- Earley parsing
« Left-corner grammar transform

+ Next time: context-sensitive grammar formalisms

Computational Linguistics 1

33

