
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 17: 1 November 2011

Agenda
• HW4, due today!
• Questions, comments, concerns?
• Schedule changes on the syllabus
• Chomsky Hierarchy revisited
• Context-sensitive grammars

•  Unification
•  Tree-adjoining grammars (TAG)
•  Combinatory Categorial Grammars (CCG)

2 Computational Linguistics 1

Chomsky Hierarchy
Language Mechanisms Examples
Regular Regular expressions

Regular grammars
Finite-state automata
Finite-state transducers
WFSAs/WFSTs

xany
Morphology
Phonology
Taggers

Context-free Context-free grammars
(CFGs)
Pushdown automata

anbn

Most syntax

Context-sensitive Unification grammars
Lexicalized formalisms
(e.g., TAG, CCG)

anbmcndm

Cross-serial dependencies

Computational Linguistics 1 3

Finite-State

Computational Linguistics 1 4

Context-Free

Computational Linguistics 1 5

Context-Sensitive: Unification

Computational Linguistics 1 6

2

Unification: Feature Structures

Computational Linguistics 1 7

e.g.,

Feature Structures
• What do feature structures provide?
• A mechanism to bring lexical features to bear on syntactic

structure
• A formal mechanism for handling how smaller constituents

combine to form larger constituents
• A mechanism to enforce constraints on syntactic

structures, e.g.,
•  Agreement
•  Grammatical heads
•  Subcategorization
•  Long-distance dependencies

Computational Linguistics 1 8

Feature Structures as Values

Computational Linguistics 1 9

Unification (⊔)
• Unification (⊔) is an operation on feature sets
• Matches in values succeed; mismatches fail
•  Feature values can be underspecified
• Unification with an underspecified value forces a match,

e.g.,

•  Features not explicitly represented are underspecified

Computational Linguistics 1 10

Underspecification: Example
• Consider the noun “sheep”, which is either plural or singular
•  In other words, the category as a subject noun will be

•  Then plural verbs like are will force a plural unification, and
singular verbs like is a singular unification

e.g., The goshdern sheep are chasing my dog versus

 The goshdern sheep is chasing my dog

Computational Linguistics 1 11

More complicated unification

Computational Linguistics 1 12

3

"Copying" via Unification
•  What if we don't yet know values, but know they should match?

•  e.g., an S node: NP and VP may be either singular or plural,
but should definitely match

Computational Linguistics 1 13

Failed Unification

Computational Linguistics 1 14

= ? = Failure

Feature Structures
• What do feature structures provide?
• A mechanism to bring lexical features to bear on syntactic

structure
• A formal mechanism for handling how smaller constituents

combine to form larger constituents
• A mechanism to enforce constraints on syntactic

structures, e.g.,
•  Agreement
•  Grammatical heads
•  Subcategorization
•  Long-distance dependencies

Computational Linguistics 1 15

Features Example: S-node Agreement
• S → NP VP

•  e.g., This flight serves breakfast or These flights serve breakfast
not This flight serve breakfast or These flights serves breakfast

Computational Linguistics 1 16

Features Example: NP Agreement
• NP → DT Noun

•  e.g., this flight or these flights
not this flights or these flight

• How would the determiner "the" be categorized? (SG or PL)
Computational Linguistics 1 17

Features: Heads

•  Features for most categories are copied from one child,
known as the head child

• Put AGREEMENT features under HEAD feature, and
copy it all:

Computational Linguistics 1 18

4

Head Constituents
• A common notion in both Linguistics and NLP is the head

constituent, i.e., most important or driving constituent
• Example: in English, VP tends to be head of S
• Can define a recursive relation, down to lexical heads
•  (S (NP The dog) (VP (VBD bit) (NP the mailman))):

•  the main verb is the head of the VP
•  the VP is the head of the S
•  thus “bit” is the lexical head of the S
•  final noun is typically considered head of NP (dog and mailman)

although some linguists argue for the determiner to be head (DP)

Computational Linguistics 1 19

Subcategorization
•  Like the notion of a head child, subcategorization is a

widespread idea
• Certain verbs require/allow certain arguments, e.g.,

•  give NP NP give the library the book
•  give NP PP give the book to the library
•  donate NP PP donate the book to the library
* donate NP NP donate the library the book

•  These are syntactic constraints
• Semantic constraints are called selectional restrictions

e.g., eat selects for edible objects
•  "Fuzzier" restrictions, more easily violated

Computational Linguistics 1 20

Subcategorization using Unification

Computational Linguistics 1 21

Long-distance Dependencies
• Now that there are subcategorization constraints, a verb

had better get its arguments
• What about the following: you give the book

No good as a stand-alone sentence
(infinitive verb, missing an argument)

•  To which library did you give the book?
• Need some mechanism for allowing argument gaps
•  These dependencies can be quite distant

Which flight do you want me to have the travel agent book?

Computational Linguistics 1 22

Existing Unification Approaches
•  Lexical Functional Grammar (LFG)

Bresnan and Kaplan (1982)
•  Generalized Phrase Structure Grammar (GPSG)

Gazdar, Klein, Pullum and Sag (1985)
•  Head-Driven Phrase Structure Grammar (HPSG)

Pollard and Sag (1994)

•  Feature structures have found their way into other approaches
•  Ideas like head children and subcategorization are widespread

Computational Linguistics 1 23 24

LFG structure,
from Riezler et al.,
2003

5

Agenda
• HW4, due today!
• Questions, comments, concerns?
• Schedule changes on the syllabus
• Chomsky Hierarchy revisited
• Context-sensitive grammars

•  Unification
•  Tree-adjoining grammars (TAG)
•  Combinatory Categorial Grammars (CCG)

25 Computational Linguistics 1

Tree-adjoining Grammars (TAG)
•  Initial, auxiliary and elementary trees
• Substitution and Adjunction
• Derived and derivation trees

Computational Linguistics 1 26

Tree-adjoining Grammars
A Tree-adjoining grammar (TAG) G = (V, T, S†, I, A)
•  a set of non-terminal variables V
•  a set of terminals T
•  a special start symbol S† ∈ V
•  a set of initial trees I

•  Non-terminals on frontier marked for substitution
•  a set of auxiliary trees A

•  One non-terminal on frontier marked as foot node
•  Otherwise like initial trees

Computational Linguistics 1 27

Elementary trees (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 28

TAGs
• Elementary trees are of type X where X is the root

category
•  Foot node must be of same category as the root
•  Lexicalized TAG (LTAG) requires at least one terminal

item (the anchor) on every elementary tree
•  Two operations defined on trees

•  Substitution
•  Adjunction

Computational Linguistics 1 29

Substitution (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 30

6

Adjunction (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 31

Derivation
• Derivation begins with a set of elementary trees like a set

of rules in a CFG
•  Trees can combine via substitution or adjunction
• Can define a “derives” relation, as with CFGs
• A string is in the “language” if there is a sequence of

derives steps from the root symbol to a tree with the
terminals at the frontier

•  TAGs can generate cross-serial dependencies
• Derivation results in two trees:

•  derived tree
•  derivation trees

Computational Linguistics 1 32

Context-Sensitive: Cross-serial Dependencies

Computational Linguistics 1 33

Context-Sensitive: Cross-serial Dependencies

Computational Linguistics 1 34

Context-Sensitive: Cross-serial Dependencies

Computational Linguistics 1 35

Cross-serial Dependencies in TAG
(slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 36

7

Elementary trees (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 37

Derived tree (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 38

Derivation tree (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 39

Example (slide taken from Joshi & Schabes, 1997)

Computational Linguistics 1 40

Properties of TAGs
•  TAGs are quite interesting formally, and a lot of work in

formal language theory has been done
•  The derivation trees are context-free, i.e. the derivation

sequences form a context-free language
•  There is a kind of pushdown automata that is weakly

equivalent to TAGs
• Parsing complexity O(n6) compared to O(n3) for CFG

Computational Linguistics 1 41

Agenda
• HW4, due today!
• Questions, comments, concerns?
• Schedule changes on the syllabus
• Chomsky Hierarchy revisited
• Context-sensitive grammars

•  Unification
•  Tree-adjoining grammars (TAG)
•  Combinatory Categorial Grammars (CCG)

• Homework 5 online tonight

42 Computational Linguistics 1

8

Computational Linguistics 1 43

End of lecture, 3 Nov.

Agenda
• HW4, due today!
• Questions, comments, concerns?
• Schedule changes on the syllabus
• Chomsky Hierarchy revisited
• Context-sensitive grammars

•  Unification
•  Tree-adjoining grammars (TAG)
•  Combinatory Categorial Grammars (CCG)

44 Computational Linguistics 1

Categorial Grammars
• Approach has been around since the 50s

(Bar-Hillel and Lambek)
• Closely tied to the Formal Semantics of Montague using

lambda calculus
•  TAG and CG have the same generative power:

every TAG grammar has a weakly equivalent CG
grammar (and vice versa)

• Notion of strong compositionality: syntactic structure and
interpretation are derived in lockstep

Computational Linguistics 1 45

Lexical Categories and Function Application

• Every word in the lexicon is associated with a complex
grammatical category

•  Two function application schemas, describing how to
combine two categories to form a new category
•  X/Y Y ⇒X
•  Y X\Y ⇒X

•  Interpret X/Y as requiring a Y on the right to make an X
•  Interpret X\Y as requiring a Y on the left to make an X
• Example: the is of category NP/N; big is N/N; car is N
•  These categories are similar to elementary trees in TAG

Computational Linguistics 1 46

CCG Example

Computational Linguistics 1 47

Type-Lifting
•  In function application there is a category that needs

something and a category that fills that need
e.g., NP S\NP ⇒ S
(S\NP needs an NP category on its left to give an S)

• One might also argue that an NP category needs an S\NP
category on its right to give an S

• Something that needs an S\NP on its right to give an S is
S/(S\NP)

•  Type lifting converts a category X to Y/(Y\X) or Y\(Y/X)
for an arbitrary Y

Computational Linguistics 1 48

9

Function Composition
• Consider John saw Mary
•  John and Mary are of category NP

saw is of category (S\NP)/NP
• We can type-lift John to S/(S\NP) giving:

John saw Mary
NP (S\NP)/NP NP
S/(S\NP) (S\NP)/NP NP

• S/(S\NP) needs something to its right that (S\NP)/NP will
provide, once it gets an NP to its right

•  Function composition allows these to combine as follows:
X/Y Y/Z ⇒X/Z or X\Y Z\X ⇒Z\Y

Computational Linguistics 1 49

Non-constituent Coordination
• With type-lifting and function composition, Categorial

grammar gets non-constituent coordination for free by
defining and as (α/α)\α

• Example: John fetched and Mary read the paper

Computational Linguistics 1 50

Compositional Semantics
• Great selling point: semantic categories associated with

syntactic categories
•  Lambda calculus provides natural formalism for deriving

meaning of a constituent from the meaning of its children
• All operations discussed here have semantic correlate

•  Function application
•  Type lifting
•  Function composition

Computational Linguistics 1 51

Lexicalized Grammar Formalisms
Tree Adjoining Grammar

substitution and adjunction
Categorial Grammar

function application and composition,
type-lifting

likes (S\NP)/NP
Harry NP
peanuts NP
passionately (S\NP)\(S\NP)

Computational Linguistics 1 52

Lexicalized Grammar Formalisms
•  TAG and CG are known as lexicalized grammars
•  Have been shown to have weakly-equivalent generative capacity
•  Lexical categories, not rules, specify how words combine
•  Subcategorization is handled by the lexical categories of verbs
•  Natural notion of lexical heads, also based on lexical categories
•  Clear that many of the dependencies are lexical

Computational Linguistics 1 53

Statistical Approaches
• As with unification grammars, each of these have had

statistical approaches
• Some of the statistical approaches have involved finite-

state approximations
•  “Supertagging” involves building a POS-tagger, with full TAG style

lexical categories

• Others involve log-linear models
• Many statistical context-free parsing approaches are

influenced by these formalisms and unification
•  Weighted, not categorical, constraints

Computational Linguistics 1 54

10

Agenda: Summary
• HW4, due today!
• Questions, comments, concerns?
• Schedule changes on the syllabus
• Chomsky Hierarchy revisited
• Context-sensitive grammars

•  Unification
•  Tree-adjoining grammars (TAG)
•  Combinatory Categorial Grammars (CCG)

• Homework 5 online 11/3

55 Computational Linguistics 1

