Computational Linguistics 1
CMSC/LING 723, LBSC 744

Lecture 19: 8 \& 10 November 2011

Agenda

- Midterms handed back today
- Discussion
- Questions, comments, concerns?
- Evaluating parser accuracy for HW5
- Finish context-sensitive grammars discussion
- Combinatory Categorial Grammars (CCG)
- Semantics
- Meaning
- Word sense
- Semantic similarity

Evaluating Parses

- Unlike in tagging, parsing results in a variable number of tags being annotated
- Example: systems analyst arbitration chef (NP (NNS systems) (NN analyst) (NN arbitration) (NN chef)) (NP (NP (NNS systems) (NN analyst)) (NN arbitration) (NN chef)) (NP (NP (NP (NNS systems) (NN analyst)) (NN arbitration)) (NN chef))
- How do we score a parse relative to the true parse?
- Need to penalize a parser that guesses too many constituents, as well as a parser that guesses too few
- Guessing both label and span of constituent
,
- show your work
- include </s> transition
- assumptions for $\mathrm{b}_{</ \mathrm{s}>}$
- Perplexity: N=4

Precision and Recall

- Each constituent has a label and a span
- For each constituent in the guessed parse, we can try to match it to a constituent in the true parse with the same label and span
- Each constituent in the true parse can only match with one in the guessed parse
- A constituent is counted correct if it matches
- A parser has high precision if most of the constituents it guessed were correct
labeled precision $(\mathrm{LP})=\frac{\text { Number of constituents correct }}{\text { Number of constituents in guess }}$
- A parser has high recall if it guesses most of the true constituents correctly
labeled recall $(L R)=\frac{\text { Number of constituents correct }}{\text { Number of constituents in truth }}$

5

F-score

- Suppose we don't care about recall...how could we get very high precision (nearly 100\%)?
- Put just a flat S category spanning the whole string
- Precision would be high; recall low
- Suppose we don't care about precision...how could we get very high recall (100\%)?
- Guess every category for every span
- Recall would be high; precision low
- Must measure both for evaluation purposes
- For those who insist on a single score, the F-measure is common:

$$
F=\frac{2(L R)(L P)}{L R+L P}
$$

Agenda

- Midterms handed back today
- Discussion
- Questions, comments, concerns?
- Evaluating parser accuracy for HW5
- Finish context-sensitive grammars discussion
- Combinatory Categorial Grammars (CCG)
- Semantics
- Meaning
- Word sense
- Semantic similarity

Word Senses

- "Word sense" = distinct meaning of a word
- Same word, different senses
- Homonyms (homonymy): unrelated senses; identical orthographic form is coincidental
- Example: "financial institution" vs. "side of river" for bank
- Polysemes (polysemy): related, but distinct senses
- Example: "financial institution" vs. "sperm bank"
- Metonyms (metonymy): "stand in", technically, a sub-case of polysemy
Examples: author for works or author, building for organization, capital city for government
- Different word, same sense
- Synonyms (synonymy)

Agenda

- Midterms handed back today
- Discussion
- Questions, comments, concerns?
- Evaluating parser accuracy for HW5
- Finish context-sensitive grammars discussion
- Combinatory Categorial Grammars (CCG)
- Semantics
- Meaning
- Word sense
- Semantic similarity

Just to confuse you...

- Homophones: same pronunciation, different orthography, different meaning
- Examples: would/wood, to/too/two
- Homographs: distinct senses, same orthographic form, different pronunciation
- Examples: bass (fish) vs. bass (instrument)

Relationship Between Senses

- IS-A relationships
- From specific to general (up): hypernym (hypernymy)
- Example: bird is a hypernym of robin
- From general to specific (down): hyponym (hyponymy)
- Example: robin is a hyponym of bird
- Part-Whole relationships
- wheel is a meronym of car (meronymy)
- car is a holonym of wheel (holonymy)

What is WordNet?

- A large lexical database developed and maintained at Princeton University
- Includes most English nouns, verbs, adjectives, adverbs
- Electronic format makes it amenable to automatic manipulation: used in many NLP applications
- "WordNets" generically refers to similar resources in other languages

WordNet Tour

Synonymy in WordNet

- WordNet is organized in terms of "synsets"
- Unordered set of (roughly) synonymous "words" (or multi-word phrases)
- Each synset expresses a distinct meaning/concept
\qquad

WordNet: Example

\{pipe, tobacco pipe\} (a tube with a small bowl at one end; used for smoking tobacco)
\{pipe, pipage, piping\} (a long tube made of metal or plastic that is used to carry water or oil or gas etc.)
pipe, tube\} (a hollow cylindrical shape)
\{pipe\} (a tubular wind instrument)
\{organ pipe, pipe, pipework\} (the flues and stops on a pipe organ)
Verb
\{shriek, shrill, pipe up, pipe\} (utter a shrill cry)
\{pipe\} (transport by pipeline) "pipe oil, water, and gas into the desert"
pipe\} (play on a pipe) "pipe a tune
\{pipe\} (trim with piping) "pipe the skirt"

Observations about sense granularity?

Computational Linguistics 1

Agenda
A HW4 handed back today
• Grades are reported out of 100, so -20 for true grade
• Questions, comments, concerns?
• Semantics
• Meaning
• Word sense disambiguation
• Semantic similarity
computational Linguistics 1

Word Sense Disambiguation (WSD)

- Take a word in context and resolve which sense of the
word is being used
• Example: He is washing the dishes versus
He is cooking three dishes
- In some past competitions, just given verb and object
pairs, goal to disambiguate object
• Selectional restrictions of verbs drive disambiguation
• (How do we learn selectional restrictions?)
Computational Linguistics 1

- As far as I know, aardvark has one sense
- The word goal has many senses
- Some differences in senses are relatively subtle - e.g. financial bank versus blood bank versus river bank
- How to provide partial credit for 'close' answers
- Senseval is a competition that has addressed many of these questions

WSD Approaches
- Depending on use of manually created knowledge
sources
• Knowledge-lean
• Knowledge-rich
• Depending on use of labeled data
• Supervised
• Semi- or minimally supervised
• Unsupervised
computational Linguistics 1

1

Lesk's Algorithm

- Simplest implementation:
- Count overlapping content words between glosses and context
- Lots of variants:
- Include the examples in dictionary definitions
- Include hypernyms and hyponyms
- Give more weight to larger overlaps (e.g., bigrams)
- Give extra weight to infrequent words (e.g., idf weighting)
- Works reasonably well!

Classifiers

- Once we cast the WSD problem as supervised classification, many learning techniques are possible:
- Naïve Bayes (the thing to try first)
- Decision lists
- Decision trees
- MaxEnt
- Support vector machines
- Nearest neighbor methods
-..
- Richer features = ML algorithm does less of the work
- More impoverished features = ML algorithm does more of the work

Classifiers Tradeoffs

- Which classifier should I use?
- It depends:
- Number of features
- Types of features
- Number of possible values for a feature
- Noise
- General advice:
- Start with Naïve Bayes
- Use decision trees/lists if you want to understand what the classifier is doing
- SVMs often give state of the art performance
- MaxEnt methods also work well

Decision Lists

- Used for binary classification problems, e.g. bass ${ }^{1}$ (fish) versus bass ${ }^{2}$ (guitar)
- A list like a case statement in programming:
- test condition 1 ; if true, set sense and break
- otherwise, test condition $2, \ldots$
- Learn by generating and ordering tests
- Order by, e.g., log likelihood ratio

Naïve Bayes

- Extract features Φ, predict word based on features
- Common features: POS-tag and word collocations, word co-occurrence
- should use subcategorization if available!
- Simplest approach
(common baseline):
Naive Bayes:
- Given a set of senses $s \in S$, pick the sense that is most probable given the context ("context" represented by feature vector):
- Problem: data sparsity!

$$
\begin{aligned}
\hat{s} & =\underset{s \in S}{\operatorname{argmax}} \mathrm{P}(s \mid \Phi) \\
& =\underset{s \in S}{\operatorname{argmax}} \frac{\mathrm{P}(\Phi \mid s) \mathrm{P}(s)}{\mathbf{P}(\Phi)} \\
& =\underset{s \in S}{\operatorname{argmax}} \mathrm{P}(\Phi \mid s) \mathrm{P}(s)
\end{aligned}
$$

Decision List: Example

- Example decision list, discriminating between bass ${ }^{1}$ (fish) and bass ${ }^{2}$ (music) :

Context	Sense
fish in $\pm k$ words	FISH
striped bass	FISH
guitar in $\pm k$ words	MUSIC
bass player	MUSIC
piano in $\pm k$ words	MUSIC
sea bass	FISH
play bass	MUSIC
river in $\pm k$ words	FISH
on bass	MUSIC
bass are	FISH
computational Linguistics 1	

Building Decision Trees

- Basic idea: build tree top down, recursively partitioning the training data at each step
- At each node, try to split the training data on a feature (could be binary or otherwise)
-What features should we split on?
- Small decision tree desired
- Pick the feature that gives the most information about the category
- Example: 20 questions
- I'm thinking of a number from 1 to 1,000
- You can ask any yes no question
- What question would you ask?

Building Decision Lists

- Simple algorithm:
- Compute how discriminative each feature is:

$$
\left|\log \left(\frac{P\left(S_{1} \mid f_{i}\right)}{P\left(S_{2} \mid f_{i}\right)}\right)\right|
$$

- Create ordered list of tests from these values
- Limitation?
- How do you build n-way classifiers from binary classifiers?
- One vs. rest (sequential vs. parallel)
- Another learning problem

Evaluating Splits via Entropy

- Entropy of a set of events E :

$$
H(E)=-\sum_{c \in C} P(c) \log _{2} P(c)
$$

- Where $P(c)$ is the probability that an event in E has category c
- How much information does a feature give us about the category (sense)?
- $H(E)=$ entropy of event set E
- $H(E \mid f)=$ expected entropy of event set E once we know the value of feature f
- Information Gain: $G(E, f)=H(E)-H(E \mid f)=$ amount of new information provided by feature f
- Split on feature that maximizes information gain

Computational Linguistics 1
Well, how well does it work? (later...) ${ }_{48}$

WSD Accuracy

- Generally:
- Naïve Bayes provides a reasonable baseline: $\sim 70 \%$
- Decision lists and decision trees slightly lower
- State of the art is slightly higher
- However:
- Accuracy depends on actual word, sense inventory, amount of training data, number of features, etc.
- Remember caveat about baseline and upper bound

Syntax-Semantics Pipeline

- Interaction between lexical semantic and syntax

Augmenting Syntactic Rules

Grammar Rule
$S \rightarrow N P V P$
$N P \rightarrow$ Det Nominal
NP \rightarrow ProperNoun
Nominal \rightarrow Noun
$V P \rightarrow$ Verb
$V P \rightarrow V e r b N P$
Det \rightarrow every
Det $\rightarrow a$
Noun \rightarrow restaurant
ProperNoun \rightarrow Matthew
ProperNoun \rightarrow Franco
ProperNoun \rightarrow Frasca
Verb \rightarrow closed
Verb \rightarrow opened

Common Thematic Roles

Thematic Role	Definition
AGENT	The volitional causer of an event
EXPERIENCER	The experiencer of an event
FORCE	The non-volitional causer of the event
THEME	The participant most directly affected by an event
RESULT	The end product of an event
CONTENT	The proposition or content of a propositional event
INSTRUMENT	An instrument used in an event
BENEFICIARY	The beneficiary of an event
SOURCE	The origin of the object of a transfer event
GOAL	The destination of an object of a transfer event

Thematic Roles: Examples

Thematic Role	Example
AGENT	The waiter spilled the soup.
EXPERIENCER	John has a headache.
FORCE	The wind blows debris from the mall into our yards.
THEME	Only after Benjamin Franklin broke the ice...
RESULT	The French government has built a regulation-size base-
ball diamond...	
CONTENT	Mona asked "You met Mary Ann at a supermarket"?
INSTRUMENT	He turned to poaching catfish, stunning them with a shock- ing device...
BENEFICIARY	Whenever Ann Callahan makes hotel reservations for her boss...
SOURCE	I flew in from Boston. GOAL

Constraints on Thematic Roles

- Verbs impose constraints on what fills their roles - Refresher: selectional restrictions
- Example: agent of imagine must be animate
- These constraints can aid interpretation
- John would like to eat downtown tonight
- John would like to eat sushi tonight
- In the case of violated constraints, features can be coerced, such as animacy
- The thumbtack took revenge on the unruly poster

How do we do it?

- Short answer: supervised machine learning
- One approach: classification of each tree constituent
- Features can be words, phrase type, linear position, tree position, etc.
- Apply standard machine learning algorithms

PropBank: Two Examples

- agree. 01
- Arg0: Agreer
- Arg1: Proposition
- Arg2: Other entity agreeing
- Example: $\left[_{\text {Argo }}\right.$ John] agrees $\left[_{\text {Arg2 }}\right.$ with Mary $\left[_{\text {Arg1 }}\right.$ on everything $]$ - fall. 01
- Arg1: Logical subject, patient, thing falling
- Arg2: Extent, amount fallen
- Arg3: Start point
- Arg4: End point
- Example: [Arg1 Sales] fell [Arg4 to $\$ 251.2$ million] [Arg3 from $\$ 278.7$ million]

Agenda

- HW4 handed back today
- Grades are reported out of 100, so -20 for true grade
- Questions, comments, concerns?
- Semantics
- Meaning
- Word sense disambiguation
- Semantic similarity

Intuition of Semantic Similarity

Semantically close	Semantically distant
- bank-money	- doctor-beer
- apple-fruit	- painting-January
- tree-forest	- money-river
- bank-river	- apple-penguin
- pen-paper	- nurse-bottle
- run-walk	- pen-river
- mistake-error	- clown-tramway
- car-wheel	
computational Linguistics 1	

Why?
- Meaning
• The two concepts are close in terms of their meaning
- World knowledge
• The two concepts have similar properties, often occur together, or
\quad occur in similar contexts
• Psychology
• We often think of the two concepts together
computational Linguistics 1

Two Types of Relations

- Synonymy: two words are (roughly) interchangeable

- Semantic similarity (distance): somehow "related"
- Sometimes, explicit lexical semantic relationship, often, not

Compute Semantic Similarity?
• Task: automatically compute semantic similarity between
words
- Theoretically useful for many applications:
• Detecting paraphrases (i.e., automatic essay grading, plagiarism
detection)
• Information retrieval
• Machine translation
• ...
- Solution in search of a problem?
computational Linguistics 1

Agenda

- HW4 handed back today
- Grades are reported out of 100 , so -20 for true grade
- Questions, comments, concerns?
- Semantics
- Meaning
- Word sense disambiguation
- Semantic similarity
- HW5 due on Tuesday!
- Meaning
- Word sense
- Semantic similarity

