
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 2: 6 September 2011

Agenda
• HW0 – questions? Due Thursday before class!

•  When in doubt, keep it simple...

• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

2 Computational Linguistics 1

Agenda
• HW0 – questions? Due Thursday before class!
• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

3 Computational Linguistics 1

Regular Expressions
• A meta-language for specifying simple classes of strings

•  Very useful in searching and matching text strings

• Regular expressions are everywhere!
•  Implementations in the shell (sed, awk, bash, grep),

Perl, Java, Python, …

4 Computational Linguistics 1

5

Regular Expressions (crash course)
•  [a-z] exactly one lowercase letter
•  [a-z]* zero or more lowercase letters
•  [a-z]+ one or more lowercase letters
•  [a-z]? zero or one lowercase letters
•  [a-zA-Z0-9] one lowercase or uppercase letter,

 or a digit
•  [^(] match anything that is not '('

Computational Linguistics 1

Examples of Regular Expressions
• Basic regular expressions

/happy/ → happy
/[abcd]/ → a, b, c, d
/[a-d]/ → a, b, c, d
/[^a-d]/ → e, f, g, … z
/[Tt]he/ → The, the
/(dog|cat)/ → dog, cat

• Special metacharacters
/colou?r/ → color, colour
/oo*h!/ → oh!, ooh!, oooh!, …
/oo+h!/ → ooh!, oooh!, ooooh!, …
/beg.n/ → began, begin, begun, begbn, …

6 Computational Linguistics 1

from Jimmy Lin

2

Agenda
• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

7 Computational Linguistics 1

Equivalence Relations
• We can say the following

•  Regular expressions describe a regular language
•  Regular expressions can be implemented by finite-state automata
•  Regular languages can be generated by regular grammars

Regular
Languages

Regular Expressions Finite-State Automata

Regular Grammars

8 Computational Linguistics 1

from Jimmy Lin

Chomsky Hierarchy
Language Mechanisms Examples
Regular Regular expressions

Regular grammars
Finite-state automata
Finite-state transducers
WFSAs/WFSTs

xany
Morphology
Phonology
Taggers

Context-free Context-free grammars
(CFGs)
Pushdown automata

anbn

Most syntax

Context-sensitive Unification grammars
Lexicalized formalisms
(e.g., TAG, CCG)

anbmcndm

Cross-serial dependencies

Computational Linguistics 1 9

Context-free

Computational Linguistics 1 10

Chomsky Hierarchy
Language Mechanisms Examples
Regular Regular expressions

Regular grammars
Finite-state automata
Finite-state transducers
WFSAs/WFSTs

xany
Morphology
Phonology
Taggers

Context-free Context-free grammars
(CFGs)
Pushdown automata

anbn

Most syntax

Context-sensitive Unification grammars
Lexicalized formalisms
(e.g., TAG, CCG)

anbmcndm

Cross-serial dependencies

Computational Linguistics 1 11

Context-sensitive: Unification

Computational Linguistics 1 12

3

Context-sensitive: Cross-serial Dependencies

Computational Linguistics 1 13

Context-sensitive: Cross-serial Dependencies

Computational Linguistics 1 14

Context-sensitive: Cross-serial Dependencies

Computational Linguistics 1 15

Chomsky Hierarchy
Language Mechanisms Examples
Regular Regular expressions

Regular grammars
Finite-state automata
Finite-state transducers
WFSAs/WFSTs

xany
Morphology
Phonology
Taggers

Context-free Context-free grammars
(CFGs)
Pushdown automata

anbn

Most syntax

Context-sensitive Unification grammars
Lexicalized formalisms
(e.g., TAG, CCG)

anbmcndm

Cross-serial dependencies

Computational Linguistics 1 16

Sheep-speech Automaton
 baa!
 baaa!
 baaaa!
 baaaaa!
 ...

q0 q1 q2 q3 q4

b a a

a

!

/baa+!/

Language:

Regular Expression:

Finite-State Automaton:

17 Computational Linguistics 1

from Jimmy Lin

Natural Language Automaton

Computational Linguistics 1 18

4

Natural Language Automaton

Computational Linguistics 1 19

Finite-State Automata (FSA)
•  Formal definitions

•  What are they?
•  What do they do?
•  How do they work?

20 Computational Linguistics 1

FSA: What are they?
• Q: a finite set of N states

•  Q = {q0, q1, q2, q3, q4}
•  The start state: q0
•  The set of final states: F = {q4}

•  Σ: a finite input alphabet of symbols
•  Σ = {a, b, !}

•  δ(q,i): transition function
•  Given state q and input symbol i, return new state q'
•  δ(q3,!) → q4

q0 q1 q2 q3 q4

b a a

a

!

21 Computational Linguistics 1

from Jimmy Lin

FSA: State Transition Table
Input

State b a !
0 1 ∅ ∅

1 ∅ 2 ∅
2 ∅ 3 ∅
3 ∅ 3 4
4 ∅ ∅ ∅

22 Computational Linguistics 1

q0 q1 q2 q3 q4

b a a

a

!

from Jimmy Lin

FSA: What do they do?
• Given a string, a FSA either rejects or accepts it

•  ba! → reject
•  baa! → accept
•  baaaz! → reject
•  baaaa! → accept
•  baaaaaa! → accept
•  baa → reject
•  moooo → reject

• Applications in NLP?
•  Grammaticality (on the word level)
•  Morphology (sub-word level)
•  Orthography (character-level)
•  Phonology (phoneme-level)

23 Computational Linguistics 1

from Jimmy Lin

FSA: How do they work?

b a a a

q0 q1 q2 q3 q3 q4

! ACCEPT

24 Computational Linguistics 1

from Jimmy Lin

q0 q1 q2 q3 q4

b a a

a

!

5

FSA: How do they work?

b a ! ! ! REJECT

q0 q1 q2

25 Computational Linguistics 1

from Jimmy Lin

q0 q1 q2 q3 q4

b a a

a

!

D-RECOGNIZE

26 Computational Linguistics 1

from Jimmy Lin

Accept or Generate?
•  Formal languages are sets of strings

•  Strings composed of symbols drawn from a finite alphabet

•  Finite-state automata define formal languages
•  Without having to enumerate all the strings in the language

•  Two views of FSAs:
•  Acceptors to tell you if a string is in the language
•  Generators to produce all and only the strings in the language

27 Computational Linguistics 1

Simple NLP with FSAs

28 Computational Linguistics 1

from Jimmy Lin

Agenda
• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

29 Computational Linguistics 1

Introducing Non-Determinism
• Deterministic vs. Non-deterministic FSAs

• Epsilon (ε) transitions

30 Computational Linguistics 1

/baa+!/

/ba+a!/

6

Using NFSAs to Accept Strings
• What does it mean?

•  Accept: there exists at least one path (need not be all paths)
•  Reject: no paths exist

• General approaches:
•  Backup: add markers at choice points, then possibly revisit

unexplored arcs at marked choice point
•  Look-ahead: look ahead in input to provide clues
•  Parallelism: look at alternatives in parallel

• Recognition with NFSAs as search through state space
•  Agenda holds (state, tape position) pairs

31 Computational Linguistics 1

from Jimmy Lin

ND-RECOGNIZE

32 Computational Linguistics 1

from Jimmy Lin

ND-RECOGNIZE

33 Computational Linguistics 1

from Jimmy Lin

State Orderings
• Stack (LIFO): depth-first
• Queue (FIFO): breadth-first

34 Computational Linguistics 1

ND-RECOGNIZE: Example

ACCEPT
35 Computational Linguistics 1

from Jimmy Lin

What’s the point?
• NFSAs and DFSAs are equivalent

•  For every NFSA, there is a equivalent DFSA (and vice versa)

• Equivalence between regular expressions and FSA
•  Easy to show with NFSAs

• Why use NFSAs?

36 Computational Linguistics 1

7

Agenda
• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

37 Computational Linguistics 1

Finite-State Transducers (FSTs)
• A two-tape automaton that recognizes or generates pairs

of strings
•  Think of an FST as an FSA with two symbol strings on

each arc
•  One symbol string from each tape

38 Computational Linguistics 1

Four-fold view of FSTs
• As a recognizer
• As a generator
• As a translator
• As a set relater

39 Computational Linguistics 1

Agenda
• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

40 Computational Linguistics 1

Regular Language: Definition
• Regular languages/FSAs as sets

•  Set math

• ∅ is a regular language
• ∀a ∈ Σ ∪ ε, {a} is a regular language
•  If L1 and L2 are regular languages, then so are:

•  L1 · L2 = {x y | x ∈ L1 , y ∈ L2 }, the concatenation of L1 and L2

•  L1 ∪ L2, the union or disjunction of L1 and L2
•  L1∗, the Kleene closure of L1

41 Computational Linguistics 1

Regular Languages: Starting Points

42 Computational Linguistics 1

8

Regular Languages: Concatenation

43 Computational Linguistics 1

Regular Languages: Disjunction

44 Computational Linguistics 1

Regular Languages: Kleene Closure

45 Computational Linguistics 1

Agenda: Summary
• Regular expressions
•  Finite-state automata (deterministic vs. non-deterministic)
•  Finite-state transducers
• Set math with FSAs

46 Computational Linguistics 1

