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Computational Linguistics 1 
CMSC/LING 723, LBSC 744 

Kristy Hollingshead Seitz 
Institute for Advanced Computer Studies 
University of Maryland 
 
Lecture 23: 29 November  2011 

Agenda 
• HW5 grades 

•  Online this evening 
•  Pickup hard copies from Alex or next class 

• HW7 "decision" due today 
• HW6 due next Tuesday 

•  Example using WordNet 

• Course evals 
• Online NLP course @ Stanford 
• Questions, comments, concerns? 
• Speech Recognition (ASR) 
•  Text-to-Speech (TTS) 
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Course Evaluations 
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Stanford NLP http://www.nlp-class.org/ 

Computational Linguistics 1 4 

Automatic Speech Recognition (ASR) 
•  IP notice: All following slides are from John-Paul Hosom, 

lectures 1 & 6 of ASR class at OHSU 
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Why is speech recognition difficult? 
• Speech is: 

•  Time-varying signal, 
•  Well-structured communication process, 
•   Depends on known physical movements, 
•   Composed of known, distinct units (phonemes),  
•   Modified when speaking to improve signal to noise ratio (SNR) 

(Lombard). 
⇒ should be easy. 
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Why is speech recognition difficult? 
•  However, speech: 

•  Is different for every speaker, 
•  May be fast, slow, or varying in speed, 
•  May have high pitch, low pitch, or be whispered, 
•  Has widely-varying types of environmental noise, 
•  Can occur over any number of channels, 
•  Changes depending on sequence of phonemes, 
•  Changes depending on speaking style (“clear” vs. “conv.”) 
•  May not have distinct boundaries between units (phonemes), 
•  Boundaries may be more or less distinct depending on speaker style 

and phoneme class, 
•  Changes depending on the semantics of the utterance, 
•  Has an unlimited number of words, 
•  Has phonemes that can be modified, inserted, or deleted 
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Why is speech recognition difficult? 
•  To solve a problem requires in-depth understanding of the problem.   

•  A data-driven approach requires (a) knowing what data is relevant 
and what data is not relevant, (b) that the problem is easily addressed 
by machine-learning techniques, and (c) which machine-learning 
technique is best suited to the behavior that underlies the data. 

•  Nobody has sufficient understanding of human speech recognition to 
either build a working model or even know how to effectively integrate 
all relevant information. 

•  This lecture: present some of what is known about speech; motivate 
use of HMMs for Automatic Speech Recognition (ASR). 
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The Speech Production Process (from Rabiner and Juang, pp.16,17) 

Speech Production 
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Speech Production 
• Sources of Sound: 

•   Vocal cord vibration 
v  voiced speech (/aa/, /iy/, /m/, /oy/) 
 

•   Narrow constriction in mouth 
v  fricatives (/s/, /f/) 

•   Airflow with no vocal-cord vibration, no constriction 
v  aspiration (/h/) 

•   Release of built-up pressure 
v  plosives (/p/, /t/, /k/) 

•   Combination of sources 
v  voiced fricatives (/z/, /v/), affricates (/ch/, /jh/) 
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Speech Production 
•  Vocal tract creates resonances: 

 

 

•  Resonant energy based on shape of mouth cavity and location of constriction.  Direct 
mapping from mouth shape to resonances. 

•  Frequency location of resonances determines identity of phoneme 

•  This implies that a key component of ASR is to create a mapping from observed 
resonances to phonemes.  However, this is only one issue in ASR; another important 
issue is that ASR must solve both phoneme identity and phoneme duration 
simultaneously. 

•  Anti-resonances (zeros) also possible in nasals, fricatives  
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Representations of Speech 
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Time domain (waveform): 

Frequency domain (spectrogram): 
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Representations of Speech 
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Spectrogram Displays: 

frame=.5 
win. = 34 

frame=10 
win. = 16 

frame=0.5 
win. = 7 
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Representations of Speech: Male vs Female 
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Time domain (waveform): 

Frequency domain (spectrogram): 

“please”: male speaker “please”: female speaker 
(from TIMIT sentence SX79.wav) 
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Representations of Speech: Pitch, Energy, Formants 
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Representations of Speech: Cepstral Features 

Computational Linguistics 1 16 

Cepstral domain (Perceptual Linear Prediction, Mel Frequency Cepstral Coefficients): 
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Time-Domain Aspects of Speech 
• Coarticulation 

v  Tongue moves gradually from one location to the next 
v  Formant frequencies change smoothly over time 
v  No distinct boundary between phonemes, especially vowels 
v  Dynamics change as a function of speaking style 
v  Dynamics as a function of duration not modeled well by  

 linear stretching 
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Time-Domain Aspects of Speech 
•   Duration modeling 

v  Rate of speech varies according to speaker, speaking style, etc. 

v  Some phonetic distinctions based on duration (/s/, /z/) 

v  Duration of each phoneme depends on rate of speech, intrinsic 
duration of that phoneme, identities of surrounding phonemes, 
syllabic stress, word emphasis, position in word, position in phrase, 
etc. 
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Models of Human Speech Recognition 
•   The Motor Theory (Liberman et al.) 

v  Speech is perceived in terms of intended physical gestures 

v  Special module in brain required to understand speech 

v  Decoding module may work using “Analysis by Synthesis” 

v  Decoding is “inherently complex” 

•   Criticisms of the Motor Theory 
v  People able to read spectrograms 

v  Complex non-speech sounds can also be recognized 

v  Acoustically-similar sounds may have different gestures 
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Models of Human Speech Recognition 
•   The Multiple-Cue Model (Cole and Scott) 

v  Speech is perceived in terms of  
a)  context-independent invariant cues   & 
b)  context-dependent phonetic transition cues 

v  Invariant cues sufficient for some phonemes (/s/, /ch/, etc) 

v  Other phonemes require context-dependent cues 

v  Computationally more practical than Motor Theory 

•   Criticism of the Multiple-Cue Model 
v  Reliable extraction of cues not always possible 
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Models of Human Speech Recognition 
•   The Fletcher-Allen Model 

v  Frequency bands processed independently 

v  Classification results from each band “fused” to classify phonemes 

v  Phonetic classification results used to classify syllables,  
 syllable results used to classify words 

v  Little feedback from higher levels to lower levels 

v  p(CVC) = p(c1) p(V) p(c2);   implies phonemes perceived individually 

•   Criticism of the Fletcher-Allen Model 
v  How to do frequency-band recognition?  How to fuse results? 
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Models of Human Speech Recognition 
•   Summary: 

v  Motor Theory has many criticisms; is inherently difficult to 
 implement. 

v  Multiple-Cue model requires accurate feature extraction. 

v  Fletcher-Allen model provides good high-level description,  
 but little detail for actual implementation. 

⇒  No model provides both a good fit to all data AND a  
 well-defined method of implementation. 
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Why is speech recognition difficult? 
•  Nobody has sufficient understanding of human speech recognition to 

either build a working model or even know how to effectively integrate 
all relevant information. 

•  Lack of knowledge of human processing leads to the use of 
"whatever works" and data-driven approaches 

•  Current solution: 
•  Data-driven training of phoneme-specific models 
•  Simultaneously solve for duration and phoneme identity 
•  Models are connected according to vocabulary constraints 
⇒ Hidden Markov Model framework 

•  No relationship between theories of human speech processing (Motor 
Theory, Cue-Based, Fletcher-Allen) and HMMs. 

•  No proof that HMMs are the “best” solution to automatic speech 
recognition problem, but HMMs provide best performance so far 
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HMMs for Speech 
•  Speech is the output of an HMM; problem is to find most likely model 

for a given speech observation sequence.  
•  Speech is divided into sequence of 10-msec frames, one frame per 

state transition  (faster processing).  Assume speech can be 
recognized using 10-msec chunks.  
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•  Each vertical line    delineates one observation, ot 

T=80 
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HMMs for Speech 
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HMMs for Speech 
•   Each state can be associated with  

•  sub-phoneme 
•  phoneme 
•  sub-word 

•  Usually, sub-phonemes or sub-words are used, to account for 
spectral dynamics (coarticulation). 

•  One HMM corresponds to one phoneme or word  
•  For each HMM, determine the probability of the best state 

sequence that results in the observed speech. 
•  Choose HMM with best match (probability) to observed speech. 
•  Given most likely HMM and state sequence, maybe determine 

the  corresponding phoneme and word sequence. 
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HMMs for Speech 
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•  Example of states for word model:  

k ae 
0.1 

0.9 0.5 

0.5 
t 

0.3 

0.7 

k ae 
0.1 

0.9 0.5 

0.5 
t 

0.3 

0.7 <null> <null> 
1.0 1.0 

3-state word model 
for “cat” 

5-state word model for 
“cat” with null states 
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HMMs for Speech 
•   Example of states for word model: 

•  7-state word model for “cat” with null states 
•  Null states do not emit observations, and are entered and exited at 

the same time t. 
•  Theoretically, they are unnecessary. 
•  Practically, they can make implementation easier. 

•  States don't have to correspond directly to phonemes, but are 
commonly labeled using phonemes. 
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ae1 ae2 0.3 

0.7 0.7 

0.3 
tcl 

0.2 

0.9 k t 
0.5 0.7 <null> <null> 

0.5 0.1 

1.0 1.0 
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HMMs for Speech 
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y eh s 

0.3 0.5 0.8 
0.7 0.5 0.2 0.4 sil sil 

1.0 0.6 

bsil(o1)·0.6·bsil(o2)·0.6·bsil(o3)·0.6·bsil(o4)·0.4·by(o5)·0.3·by(o6)·0.3·by(o7)·0.7 ... 

•  Example of using HMM for word “yes” on an utterance:  

observation state 

o1 o2 o3 o4 o5 o6 o7 o8 o29 
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HMMs for Speech 
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n ow sil 

0.2 0.9 1.0 
0.8 0.1 0.4 sil 

0.6 

bsil(o1)·0.6·bsil(o2)·0.6·bsil(o3)·0.4·bn(o4)·0.8·bow(o5)·0.9·bow(o6)·0.9 ... 

•  Example of using HMM for word “no” on same utterance:  

o1 o2 o3 o4 o5 o6 o7 o8 o29 
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HMMs for Speech 
•  Because of coarticulation, states are sometimes made dependent on 

preceding and/or following phonemes (context dependent). 

•  ae  (monophone model) 

•  k-ae+t  (triphone model) 

•  k-ae  (diphone model) 

• ae+t  (diphone model) 
 

•   Constructing words requires matching the contexts: 
•   “cat”: 

 

 sil-k+ae   k-ae+t  ae-t+sil 
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HMMs for Speech 
•  This permits several different models for each phoneme, depending on 

surrounding phonemes (context sensitive) 

    k-ae+t 

    p-ae+t 

    k-ae+p 

•   Probability of “illegal” state sequence is zero (never used) 
 
 

 sil-k+ae   p-ae+t 

•  Much larger number of states to train on… (50 vs. 125,000 for a full set of 
phonemes, 39 vs. 59,319 for reduced set). 
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HMMs for Speech 
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y 

0.3 

0.7 0.4 eh 

0.5 

0.5 

sil-y+eh sil-y+eh sil-y+eh y-eh+s y-eh+s y-eh+s 0.5 

0.2 0.3 0.2 0.3 0.4 0.3 

0.8 0.7 0.8 0.7 0.3 0.7 

•  Example of 3-state, triphone HMM (expand from previous):  
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HMMs for Speech 
•  1-state monophone (context independent) 

•  3-state monophone (context independent) 

•  1-state triphone (context dependent) 

•  3-state triphone (context dependent) 

•  what about a context-independent triphone?? 
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y 

0.3 
0.7 0.4 

sil-y+eh sil-y+eh sil-y+eh 0.5 

0.2 0.3 0.2 

0.8 0.7 0.8 

sil-y+eh 

0.3 

0.7 0.4 

y1 y2 y3 
0.5 

0.2 0.3 0.2 
0.8 0.7 0.8 
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HMMs for Speech 
•  Typically, one HMM = one word or phoneme 
•  Join HMMs to form sequence of phonemes = word-level HMM   
•  Join words to form sentences = sentence-level HMM 

•  Use  <null>  states at ends of HMM to simplify implementation 
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k ae 
0.1 

0.9 0.5 

0.5 
t 

0.3 

0.7 null null 
1.0 

s ae 
0.1 

0.9 0.8 

0.2 
t 

0.3 

0.7 null null 
(i.t.) 1.0 

(instantaneous transition) 
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HMMs for Speech 
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•  Reminder of big picture:  

feature computation 
at each frame 

(cepstral features) 

(from Encyclopedia of Information Systems, 2002) 
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Agenda 
• HW5 grades 
• HW7 "decision" due today 
• HW6 due next Tuesday 
• Course evals 
• Online NLP course @ Stanford 
• Questions, comments, concerns? 
• Speech Recognition (ASR) 
•  Text-to-Speech (TTS) 

•  Next time 
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