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Computational Linguistics 1 
CMSC/LING 723, LBSC 744 

Kristy Hollingshead Seitz 
Institute for Advanced Computer Studies 
University of Maryland 
 
Lecture 24: 1 December  2011 

Agenda 
• HW5 graded 
• HW6 due next Tuesday 
• Schedule changes 
•  IGERT 
• Winter Storm 
• Questions, comments, concerns? 
•  Text-to-Speech (TTS) 
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Speech Synthesis/Text-to-Speech (TTS) 
•  IP notice 

•  The following slides are from Dan Jurafsy, Richard Sproat, and other 
researchers as noted on the slides 

•  As presented in the Speech Synthesis lectures at  
the LSA Summer Institute 
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TTS: Outline 
•  From words to strings of phones 

•  Dictionaries 
•  Letter-to-Sound Rules  

•  (“Grapheme-to-Phoneme Conversion”) 

• Prosody 
•  Linguistic Background 
•  Producing Intonation in TTS 
•  Stress/accent 

•  TTS Systems 
•  Diphone synthesis 
•  Unit selection synthesis 
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From words to phones 
•  Two methods: 

•  Dictionary-based 
•  Rule-based (Letter-to-sound=LTS, grapheme-to-phoneme = G2P) 

• Early systems, all LTS 
• MITalk was radical in having 'huge' 10K word dictionary 
• Modern systems use a combination 
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Pronunciation Dictionaries: CMU 
• CMU dictionary: 127k words 

•  http://www.speech.cs.cmu.edu/cgi-bin/cmudict  
• Some problems: 

•  Has errors 
•  Only American pronunciations 
•  No syllable boundaries 
•  Doesn't tell us which pronunciation to use for which homophones 

•  (no POS tags) 
•  Doesn't distinguish case  

•  The word US has 2 pronunciations 
•  [AH1 S] and [Y UW1 EH1 S] 
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Dictionaries aren't sufficient 
•  Unknown words (OOVs) 

•  Increase with the (sqrt of) number of words in unseen text 
•  Black et al (1998) OALD on 1st section of Penn Treebank: 
•  Out of 39923 word tokens,  

•  1775 tokens were OOV: 4.6%  (943 unique types): 

•  So commercial systems have 4-part system: 
•  Big dictionary 
•  Names handled by special routines 
•  Acronyms handled by special routines (previous lecture) 
•  Machine learned g2p algorithm for other unknown words 

names unknown Typos/other 

1360 351 64 

76.6% 19.8% 3.6% 
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Names 
•  Big problem area is names 
•  Names are common 

•  20% of tokens in typical newswire text will be names 
•  1987 Donnelly list (72 million households) contains about 1.5 million 

names 
•  Personal names: McArthur, D’Angelo, Jiminez, Rajan, Raghavan, Sondhi, 

Xu, Hsu, Zhang, Chang, Nguyen 
•  Company/Brand names: Infinit, Kmart, Cytyc, Medamicus, Inforte, Aaon, 

Idexx Labs, Bebe 
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Names 
• Methods:  

•  Can do morphology (Walters -> Walter, Lucasville) 
•  Can write stress-shifting rules (Jordan -> Jordanian) 
•  Rhyme analogy: Plotsky by analogy with Trostsky  

(replace tr with pl) 
•  Liberman and Church:  

•  for 250K most common names, got 212K (85%) from these modified-
dictionary methods, used LTS for rest. 

•  Can do automatic country detection (from letter trigrams) and  
then do country-specific rules 

•  Can train g2p system specifically on names 
•  Or specifically on types of names (brand names, Russian names, etc) 
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Acronyms 
• We saw in the text normalization lecture 
• Use machine learning to detect acronyms 

•  EXPN 
•  ASWORD 
•  LETTERS 

• Use acronym dictionary, hand-written rules to augment 

Computational Linguistics 1 10 Slide from Dan Jurafsky 

Letter-to-Sound Rules 
•  Earliest algorithms: handwritten Chomsky+Halle-style rules: 

•  Rules apply in order 
•  “christmas” pronounced with [k] 
•  But word with ch followed by non-consonant pronounced [ch] 

•  e.g., “choice” 

• English famously evil 
•  in terms of pronunciation and stress rules 
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Modern method: Learning LTS rules automatically 
•  Induce LTS from a dictionary of the language  
• Black et al. 1998 
• Applied to English, German, French 
•  Two steps:  

•  alignment  
•  (CART-based) rule-induction 
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Alignment 
•  Letters:  c   h  e  c  k  e  d 
• Phones:  ch _ eh _  k  _  t 
• Black et al Method 1: 

•  First scatter epsilons in all possible ways to cause letters and 
phones to align 

•  Then collect stats for P(phone|letter) and select best to generate 
new stats 

•  This iterated a number of times until settles (5-6) 
•  This is EM (expectation maximization) alg 
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Hand-specified letters-to-phones 
• Hand specify which letters can be rendered as which 

phones 
•  C goes to k/ch/s/sh 
•  W goes to w/v/f, etc 

• Once mapping table is created, find all valid alignments, 
find p(letter|phone), score all alignments, take best 
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Alignment 
• Some alignments will turn out to be really bad. 
•  These are just the cases where pronunciation doesn't 

match letters: 
•  Dept  d ih p aa r t m ah n t 
•  CMU  s iy eh m y uw 
•  Lieutenant  l eh f t eh n ax n t (British) 

• Also foreign words 
•  These can just be removed from alignment training 
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 Building CART trees 
• Build a CART tree for each letter in alphabet (26 plus 

accented) using context of +-3 letters 
•  # # # c h e c -> ch 
•  c  h e  c k e d -> _ 
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Add more features 

•  Even more: for French liaison, we need to know what the next word 
is, and whether it starts with a vowel 

•  French six   
•  [s iy s] in j'en veux six  
•  [s iy z] in six enfants 
•  [s iy] in six filles  
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TTS: Outline 
•  From words to strings of phones 

•  Dictionaries 
•  Letter-to-Sound Rules  

•  (“Grapheme-to-Phoneme Conversion”) 

• Prosody 
•  Linguistic Background 
•  Producing Intonation in TTS 
•  Stress/accent 

•  TTS Systems 
•  Diphone synthesis 
•  Unit selection synthesis 
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Defining Intonation 
•  Ladd (1996) "Intonational Phonology" 
•  "The use of suprasegmental phonetic features... 

Suprasegmental = above and beyond the segment/phone 
•  F0 
•  Intensity (energy) 
•  Duration 

•  ...to convey sentence-level pragmatic meanings" 
•  i.e., meanings that apply to phrases or utterances as a whole, not 

lexical stress, not lexical tone. 
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Three aspects of prosody 
• Prominence: some syllables/words are more prominent 

than others 
• Structure/boundaries: sentences have prosodic structure 

•  Some words group naturally together 
•  Others have a noticeable break or disjuncture between them 

•  Tune: the intonational melody of an utterance. 

From Ladd (1996) 
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legumes are a good source of VITAMINS 50
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(F0 is not defined for consonants without vocal fold vibration.) 

Slide from Jennifer Venditti 

Prominence: Stress vs. Accent 
•  Prominence is the placement of pitch accents 
•  Stress is a structural property of a word — it marks a potential 

(arbitrary) location for an accent to occur, if there is one. 

•  Accent is a property of a word in context — it is a way to mark 
intonational prominence in order to 'highlight' important words in the 
discourse. 

(x) (x) (accented syll) 
x x stressed syll 
x x x full vowels 
x x x x x x x syllables 
vi ta mins Ca li for nia 
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Stress vs. Accent 
•  The speaker decides to make the word vitamin more 

prominent by accenting it. 
•  Lexical stress tell us that this prominence will appear on 

the first syllable, hence VItamin. 

• So we will have to look at both the lexicon and the context 
to predict the details of prominence 

•  I'm a little surPRISED to hear it CHARacterized as 
upBEAT 
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Which word receives an accent? 
•  It depends on the context. 
•  For example, the 'new' information in the answer to a question 

is often accented, while the 'old' information usually is not. 
 

•  Q1: What types of foods are a good source of vitamins? 
•  A1: LEGUMES are a good source of vitamins. 

•  Q2: Are legumes a source of vitamins? 
•  A2: Legumes are a GOOD source of vitamins. 

•  Q3: I’ve heard that legumes are healthy, but what are they a good 
source of ? 

•  A3: Legumes are a good source of VITAMINS. 
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Same 'tune', different alignment 

LEGUMES are a good source of vitamins 

The main rise-fall accent (= “I assert this”) shifts locations. 
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Same 'tune', different alignment 

Legumes are a GOOD source of vitamins 

The main rise-fall accent (= “I assert this”) shifts locations. 
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Same 'tune', different alignment 

legumes are a good source of VITAMINS 50

100

150

200

250

300

350

400

The main rise-fall accent (= “I assert this”) shifts locations. 
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Levels of Prominence 
•  Most phrases have more than one accent 
•  The last accent in a phrase is perceived as more prominent 

•  Called the Nuclear Accent 
•  Emphatic accents like nuclear accent often used for semantic 

purposes, such as indicating that a word is contrastive, or the 
semantic focus. 
•  The kind of thing you represent via ***s in IM, or capitalized letters 
•  "I know SOMETHING interesting is sure to happen," she said to herself. 

•  Can also have words that are less prominent than usual 
•  Reduced words, especially function words. 

•  Often use 4 classes of prominence: 
1.  emphatic accent,  
2.  pitch accent,  
3.  unaccented,  
4.  reduced 
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Three Aspects of Prosody 
• Prominence: some syllables/words are more prominent 

than others 
• Structure/boundaries: sentences have prosodic structure 

•  Some words group naturally together 
•  Others have a noticeable break or disjuncture between them 

•  Tune: the intonational melody of an utterance. 

From Ladd (1996) 
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Intonational Phrasing/Boundaries 
• A single intonation phrase 

•  Broad focus statement consisting of one intonation phrase 
(that is, one intonation tune spans the whole unit). 

•  "Legumes are a good source of vitamins." 

• Multiple phrases 
•  Utterances can be 'chunked' up into smaller phrases in order to 

signal the importance of information in each unit. 
•  "Legumes      are a good source of vitamins" 

• Disambiguation 
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Phrasing sometimes helps disambiguate 
•  Temporary ambiguity: 

When Madonna sings the song ... 
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Phrasing sometimes helps disambiguate 
•  Temporary ambiguity: 

When Madonna sings the song is a hit. 
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Phrasing sometimes helps disambiguate 
•  Temporary ambiguity: 

When Madonna sings % the song is a hit. 
 
When Madonna sings the song % it’s a hit. 
 
 
[from Speer & Kjelgaard (1992)] 
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Intonational Tunes 
• Yes-No question tune 
• WH-questions 
• Rising statements 
•  'Surprise-redundancy' tune 
•  'Contradiction' tune 
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Yes-No question tune 

are LEGUMES a good source of vitamins 

Rise from the main accent to the end of the sentence. 

50
100
150
200
250
300
350
400
450
500
550
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Yes-No question tune 

are legumes a GOOD source of vitamins 

Rise from the main accent to the end of the sentence. 

50
100
150
200
250
300
350
400
450
500
550
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Yes-No question tune 

are legumes a good source of VITAMINS 

Rise from the main accent to the end of the sentence. 

50
100
150
200
250
300
350
400
450
500
550
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WH-questions 

WHAT are a good source of vitamins 

WH-questions typically have falling contours, like statements. 

[I know that many natural foods are healthy, but ...] 
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Broad focus 

legumes are a good source of vitamins 

"Tell me something about the world." 
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In the absence of narrow focus, English tends to mark the first 
and last 'content' words with perceptually prominent accents. 
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'Surprise-redundancy' tune 

legumes are a good source of vitamins 

Low beginning followed by a gradual rise to a high at the end. 

[How many times do I have to tell you ...] 
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'Contradiction' tune 

linguini isn’t a good source of vitamins 

Sharp fall at the beginning, flat and low, then rising at the end. 

“I've heard that linguini is a good source of vitamins.” 

[... how could you think that?] 
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Using Intonation in TTS 
1)  Prominence/Accent: Decide which words are accented, 

which syllable has accent, what sort of accent 
2)  Boundaries: Decide where intonational boundaries are 
3)  Duration: Specify length of each segment 
4)  F0: Generate F0 contour from these 
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Predicting Pitch Accent: Factors 
• Part of speech 

•  Content words are usually accented 
•  Function words are rarely accented 

•  Of, for, in on, that, the, a, an, no, to, and but or will may would can her is 
their its our there is am are was were, etc. 

• But it's not just function/content 
•  Contrast 

•  Legumes are poor source of VITAMINS 
No, legumes are a GOOD source of vitamins 

•  I think JOHN or MARY should go 
No, I think JOHN AND MARY should go 

•  List intonation 
•  Information status 
•  Syntactic structure 
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Predicting Pitch Accent: Other Features 
• POS 
• POS of previous word 
• POS of next word 
• Stress of current, previous, next syllable 
• Unigram probability of word 
• Bigram probability of word 
• Position of word in sentence 
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Predicting Pitch Accent: State-of-the-art 
• Hand-label large training sets 
• Use CART, SVM, CRF, etc to predict accent 
•  Lots of rich features from context 
• Classic lit: 

•  Hirschberg, Julia. 1993. Pitch Accent in context: predicting 
intonational prominence from text. Artificial Intelligence 63, 305-340 
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Predicting Boundaries: Features 
•  Intonation phrase boundaries 

•  Intermediate phrase boundaries 
•  Full intonation phrase boundaries 

• Based just on punctuation and clauses? 

 Police also say | Levy's blood alcohol level |  
 was twice the legal limit || 

Computational Linguistics 1 46 Slide from Dan Jurafsky 

Predicting Boundaries: More Features 
•  Length features: 

•  Phrases tend to be of roughly equal length 
•  Total number of words and syllables in utterance 
•  Distance of juncture from beginning and end of sentence (in words or syllables) 

•  Neighboring POS, punctuation 
•  Syntactic structure (parse trees) 

•  Largest syntactic category dominating preceding word but not succeeding word 
•  How many syntactic units begin/end between words 

•  Other: 
•  English: boundaries are more likely between content words and function words 
•  Type of function word to right 
•  Capitalized names 
•  # of content words since previous function word 
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TTS Intonation Prediction 
• Predict duration 
• Predict F0 
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TTS: Outline 
•  From words to strings of phones 

•  Dictionaries 
•  Letter-to-Sound Rules  

•  (“Grapheme-to-Phoneme Conversion”) 

• Prosody 
•  Linguistic Background 
•  Producing Intonation in TTS 
•  Stress/accent 

•  TTS Systems 
•  Diphone synthesis 
•  Unit selection synthesis 
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Goal of Speech Synthesis Systems 
• Given: 

•  String of phones 
•  Prosody 

•  Desired F0 for entire utterance 
•  Duration for each phone 
•  Stress value for each phone, possibly accent value 

• Generate: 
•  Waveforms 
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Waveform Synthesis in Concatenative TTS 

• Diphone Synthesis 
• Unit Selection Synthesis 

•  Target cost 
•  Unit cost 
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TTS Architecture 
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Diphone TTS Architecture 
•  Training: 

•  Choose units (kinds of diphones) 
•  Record 1 speaker saying 1 example of each diphone 
•  Mark the boundaries of each diphones,  

•  cut each diphone out and create a diphone database 

• Synthesizing an utterance: 
•  Grab relevant sequence of  diphones from database 
•  Concatenate the diphones, doing slight signal processing at 

boundaries 
•  Use signal processing to change the prosody (F0, energy, duration) 

of selected sequence of diphones 
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Diphones 
• Mid-phone is more stable than edge 
• Need O(phone2) number of units 

•  Some combinations don't exist (hopefully) 
•  ATT (Olive et al. 1998) system had 43 phones 

•  1849 possible diphones 
•  Phonotactics ([h] only occurs before vowels), don't need to keep 

diphones across silence  
•  Only 1172 actual diphones 

•  May include stress, consonant clusters 
•  So could have more 

•  Lots of phonetic knowledge in design 
• Database relatively small (by today's standards) 

•  Around 8 megabytes for English (16 KHz 16 bit) 
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Diphones 
• Mid-phone is more stable than edge: 
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Voice 
• Speaker 

•  Called a voice talent 
• Diphone database 

•  Called a voice 
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Designing a diphone inventory: Nonsense words 

•  Build set of carrier words: 
•  pau t aa b aa b aa pau 
•  pau t aa m aa m aa pau 
•  pau t aa m iy m aa pau 
•  pau t aa m iy m aa pau 
•  pau t aa m ih m aa pau 

•  Advantages: 
•  Easy to get all diphones 
•  Likely to be pronounced consistently 

•  No lexical interference 

•  Disadvantages: 
•  (possibly) bigger database 
•  Speaker becomes bored 
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Designing a diphone inventory: Natural words 

•  Greedily select sentences/words: 
•  Quebecois arguments 
•  Brouhaha abstractions 
•  Arkansas arranging 

•  Advantages: 
•  Will be pronounced naturally 
•  Easier for speaker to pronounce 
•  Smaller database? (505 pairs vs. 1345 words) 

•  Disadvantages: 
•  May not be pronounced correctly 
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Labeling Diphones 
•  Run a speech recognizer in forced alignment mode 

•  Forced alignment: 
•  A trained ASR system 
•  A wavefile 
•  A word transcription of the wavefile 
•  Returns an alignment of the phones in the words to the wavefile. 

•  Much easier than phonetic labeling: 
•  The words are defined 
•  The phone sequence is generally defined 
•  They are clearly articulated 
•  But sometimes speaker still pronounces wrong, so need to check.  

•  Phone boundaries less important 
•  +- 10 ms is okay 

•  Midphone boundaries important 
•  Where is the stable part 
•  Can it be automatically found? 
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Concatenating diphones: junctures 
•  If waveforms are very different, will perceive a click at the 

junctures 
•  So need to window them 

• Also if both diphones are voiced 
•  Need to join them pitch-synchronously 

•  That means we need to know where each pitch period 
begins, so we can paste at the same place in each pitch 
period.   
•  Pitch marking or epoch detection: mark where each pitch pulse 

or epoch occurs 
•  Finding the Instant of Glottal Closure (IGC) 

•  (note difference from pitch tracking) 
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Prosodic Modification 
• Modifying pitch and duration independently 
• Changing sample rate modifies both: 

•  Chipmunk speech 

• Duration: duplicate/remove parts of the signal 
• Pitch: resample to change pitch 
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Summary: Diphone Synthesis 
•  Well-understood, mature technology 
•  Augmentations 

•  Stress 
•  Onset/coda 
•  Demi-syllables 

•  Problems: 
•  Signal processing still necessary for modifying durations 
•  Source data is still not natural 
•  Units are just not large enough; can't handle word-specific effects, etc. 
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Problems with Diphone Synthesis 
• Signal processing methods leave artifacts, making the 

speech sound unnatural 
• Diphone synthesis only captures local effects 

•  But there are many more global effects (syllable structure, stress 
pattern, word-level effects) 

Computational Linguistics 1 63 slide from Dan Jurafsky 

Unit Selection Synthesis 
• Generalization of the diphone intuition 

•  Larger units  
•  From diphones to sentences 

•  Many many copies of each unit 
•  10 hours of speech instead of 1500 diphones (a few minutes of speech) 

•  Little or no signal processing applied to each unit 
•  Unlike diphones 
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Why Unit Selection Synthesis 
•  Natural data solves problems with diphones 

•  Diphone databases are carefully designed but: 
•  Speaker makes errors 
•  Speaker doesn't speak intended dialect 
•  Require database design to be right 

•  If it's automatic 
•  Labeled with what the speaker actually said 
•  Coarticulation, schwas, flaps are natural 

•  "There's no data like more data" 
•  Lots of copies of each unit mean you can choose just the right one for the 

context 
•  Larger units mean you can capture wider effects 
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Unit Selection Intuition 
•  Given a big database 
•  For each segment (diphone) that we want to synthesize 

•  Find the unit in the database that is the best to synthesize this target 
segment 

•  What does "best" mean? 
•  Target cost: Closest match to the target description, in terms of 

•  Phonetic context 
•  F0, stress, phrase position 

•  Join cost: Best join with neighboring units 
•  Matching formants + other spectral characteristics 
•  Matching energy 
•  Matching F0 

! 

C(t1
n,u1

n ) = Ctarget (
i=1

n

" ti,ui) + C join (
i= 2

n

" ui#1,ui)
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Targets and Target Costs 
•  A measure of how well a particular unit in the database matches the 

internal representation produced by the prior stages 
•  Features, costs, and weights 
•  Examples: 

•  /ih-t/ from stressed syllable, phrase internal, high F0, content word 
•  /n-t/ from unstressed syllable, phrase final, low F0, content word 
•  /dh-ax/ from unstressed syllable, phrase initial, high F0, from function word 

"the" 
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Target Costs 
• Comprised of k subcosts 

•  Stress 
•  Phrase position 
•  F0 
•  Phone duration 
•  Lexical identity 

•  Target cost for a unit: 

! 

Ct (ti,ui) = wk
tCk

t (
k=1

p

" ti,ui)
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How to set target cost weights 

•  What you REALLY want as a target cost is the perceivable acoustic 
difference between two units 

•  But we can't use this, since the target is NOT ACOUSTIC yet, we 
haven't synthesized it! 

•  We have to use features that we get from the TTS upper levels 
(phones, prosody) 

•  But we DO have lots of acoustic units in the database. 
•  We could use the acoustic distance between these to help set the 

WEIGHTS on the acoustic features. 
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Join (Concatenation) Cost 
•  Measure of smoothness of join 
•  Measured between two database units (target is irrelevant) 
•  Features, costs, and weights 
•  Comprised of k subcosts: 

•  Spectral features 
•  F0 
•  Energy 

•  Join cost: 

! 

C j (ui"1,ui) = wk
jCk

j (
k=1

p

# ui"1,ui)
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Join costs 
• Hunt and Black 1996 
•  If ui-1==prev(ui) Cc=0 
• Used 

•  MFCC (mel cepstral features) 
•  Local F0 
•  Local absolute power 
•  Hand tuned weights 
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Join costs 
•  The join cost can be used for more than just part of 

search 
• Can use the join cost for optimal coupling (Isard and 

Taylor 1991, Conkie 1996), i.e., finding the best place to 
join the two units. 
•  Vary edges within a small amount to find best place for join 
•  This allows different joins with different units 
•  Thus labeling of database (or diphones) need not be so accurate 
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Unit Selection Search 
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Creating database 
• Unliked diphones, prosodic variation is a good thing 
• Accurate annotation is crucial 
• Pitch annotation needs to be very very accurate 
• Phone alignments can be done automatically, as 

described for diphones 
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Practical System Issues 
•  Size of typical system (Rhetorical rVoice): 

•  ~300M 
•  Speed: 

•  For each diphone, average of 1000 units to choose from, so: 
•  1000 target costs 
•  1000x1000 join costs 
•  Each join cost, say 30x30 float point calculations 
•  10-15 diphones per second 
•  10 billion floating point calculations per second 

•  But commercial systems must run ~50x faster than real time 
•  Heavy pruning essential: 1000 units -> 25 units 
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Unit Selection Summary 
•  Advantages 

•  Quality is far superior to diphones 
•  Natural prosody selection sounds better 

•  Disadvantages: 
•  Quality can be very bad in places 

•  HCI problem: mix of very good and very bad is quite annoying 
•  Synthesis is computationally expensive 
•  Can't synthesize everything you want: 

•  Diphone technique can move emphasis 
•  Unit selection gives good (but possibly incorrect) result 
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(Relatively) Recent Advances 
• Problems with Unit Selection Synthesis 

•  Can't modify signal 
(mixing modified and unmodified sounds bad) 

•  But database often doesn't have exactly what you want 

• Solution: HMM Synthesis 
•  Won the last TTS bakeoff 
•  Sounds unnatural to researchers 
•  But naïve subjects preferred it 
•  Has the potential to improve on both diphone and unit selection 
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HMM Synthesis 
• Unit selection (Roger) 
• HMM (Roger) 

• Unit selection (Nina) 
• HMM (Nina) 
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Agenda 
• HW5 graded 
• HW6 due next Tuesday 
• Schedule changes 
• Questions, comments, concerns? 
•  Text-to-Speech (TTS) 

•  Text-to-Movies: xtranormal.com 
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