
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 4: 13 September 2011

Agenda
• HW1 – due next Tuesday
• Questions?
• Morphology

•  Corrections from previous lecture

• Computational morphology
•  Continuation from previous lecture

• Phonology
• Computational phonology

2 Computational Linguistics 1

Topology of Morphologies
• Concatenative vs. non-concatenative
• Derivational vs. inflectional
• Regular vs. irregular

Computational Linguistics 1 3

Inflection vs. Derivation vs. Compounding

•  Inflection yields new forms of the same word
•  tense, number, mood, voice marking in verbs
•  case, number, gender marking in nominals
•  comparison of adjectives (e.g., big bigger biggest)

• Derivation yields different words
•  Derived nominals
•  Denominal adjectives
•  Denominal verbs
•  (adjectives & verbs derived from nouns)

• Compounding forms new words out of 2+ other words
•  Noun-noun compounding
•  Incorporation

Computational Linguistics 1 4

FSA: English Noun Morphology

Computational Linguistics 1 5

morphological only! not orthographic

FSA: English Verb Morphology
reg-verb-
stem

irreg-verb-
stem

irreg-past-
verb

past past-
part

pres-
part

3sg

walk
fry
talk
impeach

cut
speak
spoken
sing
sang

caught
ate
eaten

-ed -ed -ing -s

Lexicon

Rule

Computational Linguistics 1 6

morphological only! not orthographic

2

FSA: English Adjectival Morphology
• Examples:

•  big, bigger, biggest
•  smaller, smaller, smallest
•  happy, happier, happiest, happily
•  unhappy, unhappier, unhappiest, unhappily

• Morphemes:
•  Roots: big, small, happy, etc.
•  Affixes: un-, -er, -est, -ly

Computational Linguistics 1 7

FSA: English Adjectival Morphology

adj-root1: {happy, real, …}
adj-root2: {big, small, …}

Computational Linguistics 1 8

FSA: Derivational Morphology

Computational Linguistics 1 9

Agenda
• HW1 – due next Tuesday
• Questions?
• Morphology

•  Corrections from previous lecture

• Computational morphology
•  Finite-state methods: FSAs, FSTs

• Phonology
• Computational phonology

10 Computational Linguistics 1

Morphological Parsing with FSTs
•  Limitation of FSA:

•  Accepts or rejects an input… but doesn’t actually provide an
analysis

• Use FSTs instead!
•  One tape contains the input, the other tape as the analysis
•  What if both tapes contain symbols?
•  What if only one tape contains symbols?

Computational Linguistics 1 11

Terminology
•  Transducer alphabet (pairs of symbols):

•  a:b = a on the upper tape, b on the lower tape
•  a:ε = a on the upper tape, nothing on the lower tape
•  If a:a, write a for shorthand

• Special symbols
•  # = word boundary
•  ^ = morpheme boundary
•  (For now, think of these as mapping to ε)

Computational Linguistics 1 12

3

FST for English Nouns
•  First try:

• What’s the problem here?

Computational Linguistics 1 13

from Jurafsy & Martin

FST for English Nouns

Computational Linguistics 1 14

from Jurafsy & Martin

FST Expanded for More Nouns

Computational Linguistics 1 15

Handling Orthography

Computational Linguistics 1 16

from Jurafsy & Martin

Complete Morphological Parser

Computational Linguistics 1 17

from Jurafsy & Martin

Lexical

Computational Linguistics 1 19

4

Lexical to Morphemes

Computational Linguistics 1 20

Morphemes to Orthographic Form

Computational Linguistics 1 21

Practical NLP Applications
•  In practice, it is almost never necessary to write FSTs by

hand…
•  Typically, one writes rules:

•  Chomsky and Halle Notation: a → b / c__d
= rewrite a as b when occurs between c and d

•  E-Insertion rule

• Rule → FST compiler handles the rest…

ε → e /
x
s
z

^ __ s #

Computational Linguistics 1 22

from Jimmy Lin

Morphological Dictionaries
• Most commonly, simply build a dictionary from a closed

vocabulary
• Compile dictionary into a transducer
• Exceptions for very productive morphological systems,

e.g., Turkish, which result in too large a lexicon
• Having an explicit off-line dictionary allows for

optimizations (structure sharing)
• Similar issues in phonology (coming up next!)

Computational Linguistics 1 23

FSTs and Ambiguity
•  unionizable

•  union +ize +able
•  un+ ion +ize +able

•  assess
•  assess +V
•  ass +N +essN

Computational Linguistics 1 24

Agenda
• HW1 – due next Tuesday
• Questions?
• Morphology

•  Corrections from previous lecture

• Computational morphology
•  Finite-state methods: FSAs, FSTs
•  One final question: is morphology finite?

• Phonology
• Computational phonology

25 Computational Linguistics 1

5

Agenda
• HW1 – due next Tuesday
• Questions?
• Morphology

•  Corrections from previous lecture

• Computational morphology
•  Finite-state methods: FSAs, FSTs

• Phonology
• Computational phonology

26 Computational Linguistics 1

Phonology
• Phonology is the study of sound alternations in language
• Computational phonology is computational models of

those alternations
• Putting morphemes together to create words typically

involves some amount of phonological alternation
(sometimes quite a lot)
•  So computational morphology invariably also involves

computational phonology too

• Most morphological analyzers deal with text
•  So what counts as computational phonology is really

“computational orthography”

Computational Linguistics 1 27

Orthography vs Phonology
• Some languages/writing systems have a very close

relation between spelling and pronunciation
•  e.g., Spanish, Serbocroatian, Finnish, Turkish
•  In these languages,

modeling spelling alternations ~ modeling phonological alternations

•  In other languages, the spelling is relatively far removed
from the pronunciation
•  English, French, Gaelic
•  In English, many of the alternations one must unravel in a

morphological analyzer are spelling alternations

Computational Linguistics 1 28

Orthography vs Phonology
•  This can both help and hurt...
• Phonological alternations can be obscured by the spelling:

•  Newton Newtonian
•  maniac maniacal
•  electric electricity

• Or the spelling alternations may have no counterpart in
the phonology:
•  innovate innovation
•  picnic picnicking
•  happy happiest
•  gooey gooiest

Computational Linguistics 1 29

Phonemes

Computational Linguistics 1 30

from the CMU Pronouncing Dictionary

Phonetic Classes
• Stops/Plosives

•  Voiced: b, d, g
•  Unvoiced: p, t, k

•  Fricatives
•  Voiced: v, dh, z, zh
•  Unvoiced: f, th, s, sh

• Nasals
•  m, n, ng

•  Liquids
•  l, r

• Vowels, Dipthongs
•  high/low, back, round

Computational Linguistics 1 31

from Wikipedia

(IY) bee

(EY) hide

(EH) red

(AA) father

6

Phonetic Features
• Height (vertical dimension)

•  Height of tongue (high/low)
•  Relative frequency of the first formant (inverse)
•  Openness of jaw (close/open)

• Backness (horizontal dimension)
•  Position of the tongue during articulation

• Roundedness (lip position)

Computational Linguistics 1 32

Encoding Vowel Features

Computational Linguistics 1 33

•  Typically binary features
• Encode place and manner

of articulation

Feature High Low Back Round
IY ("bee") + - - -
UW ("two") + - + +
AY ("hide") + - - -
EH ("red") - + - -
AA ("odd") - + - -
AO ("hot") - + + +

from Wikipedia

Encoding Articulatory Classes

Computational Linguistics 1 34

from Jurafsky & Martin

• Can help to explain some orthographic phenomena
•  e.g., "inconceivable", "imperfect"

Feature Values
voicing +voice, -voice, silence
front-back front, back, nil, silence
rounding +round, -round, nil, silence
manner stop, vowel, lateral, nasal, fricative, silence
cplace labial, coronal, palatal, velar
vplace glottal, high, mid, low, silence

Interaction of Phonetic Features
• Rate of speech

•  How quickly can you move your articulators?
•  Speech is efficient

• Chomsky-Halle phonological re-write rules
•  Phonemes in a "phonetic environment",

e.g., rule for flapping (t|d à dx)
• Statistical analysis

•  Phonetic reduction processes in fast speech
•  A word with higher conditional probability more likely to have

reduced vowels or deleted consonants
•  Sociolinguistic factors: dialect, register, style
•  Coarticulation

• All important for speech recognition or synthesis

Computational Linguistics 1 35

Agenda
• HW1 – due next Tuesday
• Questions?
• Morphology

•  Corrections from previous lecture

• Computational morphology
•  Finite-state methods: FSAs, FSTs

• Phonology
• Computational phonology

36 Computational Linguistics 1

Computational Phonology
• Explicit rules to model alternations
• Constraint-based approach

•  Generate all variants, filter using surface constraints to disallow
illegal variants

•  e.g., generate both "inperfect" and "imperfect"
then filter (disallow) coronal-labial sequence of inperfect

• Optimality Theory (in SaLP)
•  GEN generates all possible forms.
•  Use a set of rank-ordered (supposedly universal) violable

constraints to assign violations to each form
•  Of the set of forms and the worst violation assigned to each of

them, choose the form with the least ranked of these violations

Computational Linguistics 1 37

7

Ordered Rules vs Optimality Theory
•  It has been argued that there is no computational

difference between traditional ordered rules and
Optimality Theory

•  Traditional ordered rules can be implemented using
composed transducers...

•  ...so can we implement Optimality Theory using
composed transducers?

• OT can be implemented using constraints leniently
composed together

Computational Linguistics 1 38

History of Computational Phonology
•  The theory of phonology, based on Chomsky-Halle's

rewrite rules, had the problem that unconstrained rewrite
rules were too powerful
•  But in fact, the “context sensitive” rewrite rules, as they are

invariably used in phonology, were really much weaker, and in fact
are equivalent to regular relations

•  The main constraint is that such rules cannot apply arbitrarily to
their own output

• So, if rewrite rules are implementable as FSTs, can one
build a compiler that takes a set of these rules and
produces an FST?
•  Kaplan & Kay, 1970s-1994

Computational Linguistics 1 39

Two-Level Morphology [Koskenniemi]
• Rather than trying to compile rules into transducers and

compose them serially, instead have a set of very
compact transducers
•  Each transducer relates the surface and lexical forms

•  The rules would be interpreted in parallel (formally
equivalent to intersection)

• More than just a computational model:
it was a theory of phonology
•  Essentially claimed that there was never any need to create

intermediate levels between underlying (abstract) forms and
surface forms

• Koskenniemi developed a set of transducers by hand for
the entire morphology of Finnish

Computational Linguistics 1 40

Two-Level Rules
• Basic formalism:

CorrespondencePair op LeftContext — RightContext
•  Exclusion rule a:b /⇐ LC __ RC
•  Context restriction rule a:b ⇒ LC __ RC
•  Surface coercion rule a:b ⇐ LC __ RC
•  Composite rule a:b ⇔ LC __ RC

•  Interpretation:
•  Exclusion rule: a cannot be realized as b in the stated context.
•  Context restriction rule: a can only be realized as b in the stated

context (and nowhere else)
•  Surface coercion rule: a must be realized as b in the stated context
•  Composite rule: a is realized as b obligatorily and only in the stated

context

Computational Linguistics 1 41

Systems Based on Two-Level Rules
• Many morphological analyzers have been built using the

Koskenniemi approach
• But many systems are not purely two-level: many systems

are based on cascaded two-level rules
•  Two-level rules are not strictly necessary; sometimes they

make the description more convenient, but never required
• Systems of two-level rules and systems of cascaded rules

are formally equivalent

Computational Linguistics 1 42

Two-Level Rules as FSTs

Computational Linguistics 1 43

•  Recall that:
•  Rather than trying to compile rules into transducers and compose

them serially, instead have a set of very compact transducers
•  Each transducer relates the surface and lexical forms

•  The rules would be interpreted in parallel
(formally equivalent to intersection)

8

Lexical to Surface Form FSTs

Computational Linguistics 1 44

Initialize FST
•  From a simple dictionary:

• Compile into a transducer offline & optimize

Computational Linguistics 1 45

From Dictionary to Transducer (Format)

Computational Linguistics 1 46

(spelling dictionary FST)

Create FST

Computational Linguistics 1 47

• Optimize: determinize
• Test! Accept/reject, generate.

Agenda
• Morphology

•  Corrections from previous lecture

• Computational morphology
•  Finite-state methods: FSAs, FSTs

• Phonology
• Computational phonology
• Next time: language modeling, probabilistic models
• Homework due next Tuesday

49 Computational Linguistics 1

