
1

Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland

Lecture 5: 15 September 2011

Agenda
• Readings
• HW1 – due next Tuesday
• Questions?
•  Language Models
• Smoothing
• Evaluating LMs

2 Computational Linguistics 1

Morphemes to Orthographic Form

Computational Linguistics 1 3

FSA: English Verb Morphology
reg-verb-
stem

irreg-verb-
stem

irreg-past-
verb

past past-
part

pres-
part

3sg

walk
fry
talk
impeach

cut
catch
speak
sing
eat

cut
caught
spoke
sang
ate

-ed -ed -ing -s

Lexicon

Rule

Computational Linguistics 1 4

morphological only! not orthographic

Composing Two FSTs

Computational Linguistics 1 5

Agenda
• Readings
• HW1 – due next Tuesday
• Questions?
•  Language Models
• Smoothing
• Evaluating LMs

7 Computational Linguistics 1

2

N-Gram Language Models
• What?

•  Language Models assign probabilities to sequences of tokens

• Why?
•  Statistical machine translation
•  Speech recognition
•  Handwriting recognition
•  Predictive text input

• How?
•  Based on previous word histories
•  n-gram = consecutive sequences of tokens

Computational Linguistics 1 8

This is a sentence

N-Gram Language Models
N=1 (unigrams)

Unigrams:
This,

is,
a,

sentence

Sentence of length s, how many unigrams?

Computational Linguistics 1 10

This is a sentence

N-Gram Language Models

Bigrams:
This is,

is a,
a sentence

N=2 (bigrams)

Sentence of length s, how many bigrams?

Computational Linguistics 1 11

This is a sentence

N-Gram Language Models

Trigrams:
This is a,

is a sentence

N=3 (trigrams)

Sentence of length s, how many trigrams?

Computational Linguistics 1 12

Computing Probabilities

Is this practical?
No! Can’t keep track of all possible histories of all words!

[chain rule]

Computational Linguistics 1 13

Approximating Probabilities
Basic idea: limit history to fixed number of words N	

(Markov Assumption)	

N=1: Unigram Language Model	

Computational Linguistics 1 14

3

Approximating Probabilities
Basic idea: limit history to fixed number of words N	

(Markov Assumption)	

N=2: Bigram Language Model	

Computational Linguistics 1 15

Approximating Probabilities
Basic idea: limit history to fixed number of words N	

(Markov Assumption)	

N=3: Trigram Language Model	

Computational Linguistics 1 16

Building N-Gram Language Models
• Use existing sentences to compute n-gram probability

estimates (training)
•  Terminology:

•  N = total number of words in training data (tokens)
•  V = vocabulary size or number of unique words (types)
•  C(w1,...,wk) = frequency of n-gram w1, ..., wk in training data
•  P(w1, ..., wk) = probability estimate for n-gram w1 ... wk

•  P(wk|w1, ..., wk-1) = conditional probability of producing wk given the
history w1, ... wk-1

Computational Linguistics 1 17

Building N-Gram Models
• Start with what’s easiest!
• Compute maximum likelihood estimates for individual

n-gram probabilities
•  Unigram:

•  Bigram:

• Uses relative frequencies as estimates
• Maximizes the likelihood of the data given the model

P(D|M)

Computational Linguistics 1 20

Example: Bigram Language Model

Note: We don’t ever cross sentence boundaries

I am Sam
Sam I am
I do not like green eggs and ham

<s>
<s>
<s>

</s>
</s>

</s>

Training Corpus

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Computational Linguistics 1 21

Data Sparsity

P(I like ham)

= P(I | <s>) P(like | I) P(ham | like) P(</s> | ham)

= 0

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Why?
Why is this bad?

Computational Linguistics 1 22

4

Data Sparsity
•  Serious problem in language modeling!
•  Increase N?

•  Larger N = more context
•  Lexical co-occurrences
•  Local syntactic relations

•  More context is better?
•  Larger N = more complex model

•  For example, assume a vocabulary of 100,000
•  How many parameters for unigram LM? Bigram? Trigram?

•  Data sparsity becomes even more severe as N increases
•  Solution 1: Use larger training corpora

•  Can’t always work... Blame Zipf’s Law (Looong tail)
•  Solution 2: Assign non-zero probability to unseen n-grams

•  Known as smoothing

Computational Linguistics 1 23

Agenda
•  Language Models
• Smoothing
• Evaluating LMs

Computational Linguistics 1 24

Smoothing
•  Zeros are bad for any statistical estimator

•  Need better estimators because MLEs give us a lot of zeros
•  A distribution without zeros is “smoother”

•  The Robin Hood Philosophy: Take from the rich (seen n-
grams) and give to the poor (unseen n-grams)
•  And thus also called discounting
•  Critical: make sure you still have a valid probability distribution!

•  Language modeling: theory vs. practice

Computational Linguistics 1 25

Laplace’s Law
• Simplest and oldest smoothing technique
•  Just add 1 to all n-gram counts including the unseen ones
• So, what do the revised estimates look like?

Computational Linguistics 1 26

Laplace’s Law: Probabilities
Unigrams

Bigrams

What if we don’t know V?

Careful, don’t confuse the N’s!

Computational Linguistics 1 27

Laplace’s Law
• Bayesian estimator with uniform priors
• Moves too much mass over to unseen n-grams
• What if we added a fraction of 1 instead?

Computational Linguistics 1 29

5

Lidstone’s Law of Succession
• Add 0 < γ < 1 to each count instead
•  The smaller γ is, the lower the mass moved to the unseen

n-grams (0=no smoothing)
•  The case of γ = 0.5 is known as Jeffery-Perks Law or

Expected Likelihood Estimation
• How to find the right value of γ?

Computational Linguistics 1 30

Good-Turing Estimator
•  Intuition: Use n-grams seen once to estimate n-grams

never seen and so on
• Compute Nr (frequency of frequency r)

•  N0 is the number of items with count 0
•  N1 is the number of items with count 1
•  …

Computational Linguistics 1 31

Good-Turing Estimator
•  For each r, compute an expected frequency estimate

(smoothed count)

• Replace MLE counts of seen bigrams with the expected
frequency estimates and use those for probabilities

Computational Linguistics 1 32

Good-Turing Estimator
• What about an unseen bigram?

• Do we know N0? Can we compute it for bigrams?

Computational Linguistics 1 33

Good-Turing Estimator: Example
r	

 Nr	

1	

 138741	

2	

 25413	

3	

 10531	

4	

 5997	

5	

 3565	

6	

 ...	

V = 14585
Seen bigrams =199252

C(person she) = 2
C(person) = 223

(14585)2 - 199252

N1 / N0 = 0.00065
N1 /(N0 N) = 1.06 x 10-9

N0 =

Cunseen =
Punseen =

CGT(person she) = (2+1)(10531/25413) = 1.243
P(she|person) =CGT(person she)/223 = 0.0056

Note: Assumes mass is uniformly distributed

Computational Linguistics 1 34

Good-Turing Estimator
•  For each r, compute an expected frequency estimate

(smoothed count)

• Replace MLE counts of seen bigrams with the expected
frequency estimates and use those for probabilities

What if wi isn’t observed?

Computational Linguistics 1 35

6

Good-Turing Estimator
• Can’t replace all MLE counts
• What about rmax?

•  Nr+1 = 0 for r = rmax

• Solution 1: Only replace counts for r < k (~10)
• Solution 2: Fit a curve S through the observed (r, Nr)

values and use S(r) instead
•  For both solutions, remember to do what?
• Bottom line: the Good-Turing estimator is not used by

itself but in combination with other techniques

Computational Linguistics 1 36

Agenda
•  Language Models
• Smoothing

•  Combining estimators

• Evaluating LMs

Computational Linguistics 1 37

Agenda: Summary
•  Language Models

•  Assign probabilities to sequences of tokens

• N-gram language models
•  Consider only limited histories

• Data sparsity
•  Smoothing to the rescue!
•  Variations on a theme: different techniques for redistributing

probability mass
•  Important: make sure you still have a valid probability distribution!

• Evaluating LMs

Computational Linguistics 1 38

Combining Estimators
• Better models come from:

•  Combining n-gram probability estimates from different models
•  Leveraging different sources of information for prediction

•  Three major combination techniques:
•  Simple Linear Interpolation of MLEs
•  Katz Backoff
•  Kneser-Ney Smoothing

Computational Linguistics 1 39

Linear MLE Interpolation
• Mix a trigram model with bigram and unigram models to

offset sparsity
• Mix = Weighted Linear Combination

Computational Linguistics 1 40

Linear MLE Interpolation
•  λi are estimated on some held-out data set (not training,

not test)
• Estimation is usually done via an EM variant or other

numerical algorithms (e.g. Powell)

Computational Linguistics 1 41

7

Backoff Models
• Consult different models in order depending on specificity

(instead of all at the same time)
•  The most detailed model for current context first and, if

that doesn’t work, back off to a lower model
• Continue backing off until you reach a model that has

some counts

Computational Linguistics 1 42

Backoff Models
•  Important: need to incorporate discounting as an integral

part of the algorithm… Why?
• MLE estimates are well-formed…
• But, if we back off to a lower order model without taking

something from the higher order MLEs, we are adding
extra mass!

• Katz backoff
•  Starting point: GT estimator assumes uniform distribution over

unseen events… can we do better?
•  Use lower order models!

Computational Linguistics 1 43

Katz Backoff

Given a trigram “x y z”

Computational Linguistics 1 44

Katz Backoff
• Why use PGT and not PMLE directly ?

•  If we use PMLE then we are adding extra probability mass when
backing off!

•  Another way: Can’t save any probability mass for lower order
models without discounting

• Why the α’s?
•  To ensure that total mass from all lower order models sums exactly

to what we got from the discounting

Computational Linguistics 1 45

Kneser-Ney Smoothing
• Observation:

•  Average Good-Turing discount for r ≥ 3 is largely constant over r
•  So, why not simply subtract a fixed discount D (≤1) from non-zero

counts?

• Absolute Discounting: discounted bigram model, back off
to MLE unigram model

• Kneser-Ney: Interpolate discounted model with a special
“continuation” unigram model

Computational Linguistics 1 46

Kneser-Ney Smoothing
•  Intuition

•  Lower order model important only when higher order model is
sparse

•  Should be optimized to perform in such situations

• Example
•  C(Los Angeles) = C(Angeles) = M; M is very large
•  “Angeles” always and only occurs after “Los”
•  Unigram MLE for “Angeles” will be high and a normal backoff

algorithm will likely pick it in any context
•  It shouldn’t, because “Angeles” occurs with only a single context in

the entire training data

Computational Linguistics 1 47

8

Kneser-Ney Smoothing
• Kneser-Ney: Interpolate discounted model with a special

“continuation” unigram model
•  Based on appearance of unigrams in different contexts
•  Excellent performance, state of the art

• Why interpolation, not backoff?
= number of different contexts wi has appeared in

Computational Linguistics 1 48

Explicitly Modeling OOV
•  Fix vocabulary at some reasonable number of words
• During training:

•  Consider any words that don’t occur in this list as unknown or out
of vocabulary (OOV) words

•  Replace all OOVs with the special word <UNK>
•  Treat <UNK> as any other word and count and estimate

probabilities

• During testing:
•  Replace unknown words with <UNK> and use LM
•  Test set characterized by OOV rate (percentage of OOVs)

Computational Linguistics 1 49

Agenda: Summary
•  Language Models
• Smoothing
• Evaluating LMs: Perplexity

Computational Linguistics 1 50

Evaluating Language Models
•  Information theoretic criteria used
• Most common: Perplexity assigned by the trained LM to a

test set
• Perplexity: How surprised are you on average by what

comes next ?
•  If the LM is good at knowing what comes next in a sentence ⇒ Low

perplexity (lower is better)
•  Relation to weighted average branching factor

Computational Linguistics 1 51

Computing Perplexity
• Given testset W with words w1, ...,wN

•  Treat entire test set as one word sequence
• Perplexity is defined as the probability of the entire test

set normalized by the number of words

• Using the probability chain rule and (say) a bigram LM, we
can write this as

• A lot easer to do with log probs!

Computational Linguistics 1 52

Practical Evaluation
• Use <s> and </s> both in probability computation
• Count </s> but not <s> in N
•  Typical range of perplexities on English text is 50-1000
• Closed vocabulary testing yields much lower perplexities
•  Testing across genres yields higher perplexities
• Can only compare perplexities if the LMs use the same

vocabulary

Training: N=38 million, V~20000, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training

Order	

 Unigram	

 Bigram	

 Trigram	

PP	

 962	

 170	

 109	

Computational Linguistics 1 53

9

Typical “State of the Art” LMs
•  Training

•  N = 10 billion words, V = 300k words
•  4-gram model with Kneser-Ney smoothing

•  Testing
•  25 million words, OOV rate 3.8%
•  Perplexity ~50

Computational Linguistics 1 54

Agenda: Summary
•  Language Models

•  Assign probabilities to sequences of tokens

• N-gram language models
•  Consider only limited histories

• Data sparsity
•  Smoothing to the rescue!
•  Variations on a theme: different techniques for redistributing

probability mass
•  Important: make sure you still have a valid probability distribution!

• Evaluating LMs

Computational Linguistics 1 55

