

Agenda

- Readings
-HW1 - due next Tuesday
- Questions?
- Language Models
- Smoothing
- Evaluating LMs

N-Gram Language Models

-What?

- Language Models assign probabilities to sequences of tokens
- Why?
- Statistical machine translation
- Speech recognition
- Handwriting recognition
- Predictive text input
- How?
- Based on previous word histories
- n-gram = consecutive sequences of tokens

N-Gram Language Models
$\mathrm{N}=1$ (unigrams)

This is asentence

Unigrams:
This,
is,
a,
sentence

| N-Gram Language Models
 $\mathrm{N}=3$ (trigrams) |
| :--- | :--- |
| This(is a)sentence |
| Trigrams: |
| This a a |
| is a sentence |

Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

N=I: Unigram Language Model

$$
\begin{aligned}
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) & \approx P\left(w_{k}\right) \\
\Rightarrow P\left(w_{1}, w_{2}, \ldots, w_{T}\right) & \approx P\left(w_{1}\right) P\left(w_{2}\right) \ldots P\left(w_{T}\right)
\end{aligned}
$$

Is this practical?

No! Can't keep track of all possible histories of all words!

Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

N=2: Bigram Language Model

$$
\begin{aligned}
& P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-1}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1} \mid<\mathrm{S}>\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{T} \mid w_{T-1}\right)
\end{aligned}
$$

Building N-Gram Language Models

- Use existing sentences to compute n-gram probability estimates (training)
- Terminology:
- $N=$ total number of words in training data (tokens)
- $V=$ vocabulary size or number of unique words (types)
- C $\left(w_{1}, \ldots, w_{k}\right)=$ frequency of n-gram w_{1}, \ldots, w_{k} in training data
- $\mathrm{P}\left(w_{1}, \ldots, w_{k}\right)=$ probability estimate for n-gram $w_{1} \ldots w_{k}$
- $\mathrm{P}\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right)=$ conditional probability of producing w_{k} given the history $w_{1}, \ldots w_{k-1}$

Example: Bigram Language Model

```
<s> I am Sam </s>
<s> Sam Iam </s>
<s> I do not like green eggs and ham </s>
```

Training Corpus

$$
\begin{array}{ll}
P(|\mid<s>)=2 / 3=0.67 & P(\text { Sam } \mid<s>)=1 / 3=0.33 \\
P(a m \mid 1)=2 / 3=0.67 & P(\text { do } \mid 1)=1 / 3=0.33 \\
P(\langle/ s>| \text { Sam })=1 / 2=0.50 & P(\text { Sam } \mid a m)=1 / 2=0.50
\end{array}
$$

Bigram Probability Estimates
Note: We don't ever cross sentence boundaries

Data Sparsity

$P(\|\mid<s>)=2 / 3=0.67$	$P($ Sam $\mid<s>)=1 / 3=0.33$
$P($ am $\|\mid)=2 / 3=0.67$	$P($ do $\|\mid)=1 / 3=0.33$
$P(</ s>\mid$ Sam $)=1 / 2=0.50$	$P($ Sam \mid am $)=1 / 2=0.50$
\ldots	

Bigram Probability Estimates

P (I like ham)

$$
=P(1 \mid<s>) P(\text { like } \mid I) P(\text { ham | like }) P(</ s>\mid \text { ham })
$$

$$
=0
$$

Why?
Why is this bad?

Data Sparsity

- Serious problem in language modeling!
- Increase N?
- Larger $\mathrm{N}=$ more context

Lexical co-occurrences

- Local syntactic relations
- More context is better?
- Larger $\mathrm{N}=$ more complex model
- For example, assume a vocabulary of 100,000
- How many parameters for unigram LM? Bigram? Trigram?
- Data sparsity becomes even more severe as N increases
- Solution 1: Use larger training corpora
- Can't always work... Blame Zipf's Law (Looong tail)
- Solution 2: Assign non-zero probability to unseen n-grams
- Known as smoothing

Smoothing

- Zeros are bad for any statistical estimator
- Need better estimators because MLEs give us a lot of zeros
- A distribution without zeros is "smoother"
- The Robin Hood Philosophy: Take from the rich (seen ngrams) and give to the poor (unseen n-grams)
- And thus also called discounting
- Critical: make sure you still have a valid probability distribution!
- Language modeling: theory vs. practice

Laplace's Law

- Simplest and oldest smoothing technique
- Just add 1 to all n-gram counts including the unseen ones
- So, what do the revised estimates look like?

Agenda

- Language Models
- Smoothing
- Evaluating LMs
Laplace's Law
- Simplest and oldest smoothing technique
• Just add 1 to all n-gram counts including the unseen ones
• So, what do the revised estimates look like?

Laplace's Law

- Bayesian estimator with uniform priors
- Moves too much mass over to unseen n-grams
-What if we added a fraction of 1 instead?

Laplace's Law: Probabilities

$$
P_{M L E}\left(w_{i}\right)=\frac{C\left(w_{i}\right)}{N} \quad \longrightarrow \quad P_{L A P}\left(w_{i}\right)=\frac{C\left(w_{i}\right)+1}{N+V}
$$

$$
\begin{aligned}
& P_{M L E}\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)}{N} \longrightarrow P_{L A P}\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)+1}{N+V^{2}} \\
& \quad \text { Careful, don't confuse the } \mathbf{N} \text { 's! }
\end{aligned}
$$

$$
P_{L A P}\left(w_{j} \mid w_{i}\right)=\frac{P_{L A P}\left(w_{i}, w_{j}\right)}{P_{L A P}\left(w_{i}\right)}=\frac{C\left(w_{i}, w_{j}\right)+1}{C\left(w_{i}\right)+V}
$$

What if we don't know V ?

Lidstone's Law of Succession

- Add $0<y<1$ to each count instead
- The smaller y is, the lower the mass moved to the unseen n-grams ($0=$ no smoothing)
- The case of $y=0.5$ is known as Jeffery-Perks Law or Expected Likelihood Estimation
- How to find the right value of γ ?

Good-Turing Estimator

- For each r, compute an expected frequency estimate (smoothed count)

$$
r^{\prime}=C_{G T}\left(w_{i}, w_{j}\right)=(r+1) \frac{N_{r+1}}{N_{r}}
$$

- Replace MLE counts of seen bigrams with the expected frequency estimates and use those for probabilities

$$
P_{G T}\left(w_{i}, w_{j}\right)=\frac{C_{G T}\left(w_{i}, w_{j}\right)}{N} \quad P_{G T}\left(w_{j} \mid w_{i}\right)=\frac{C_{G T}\left(w_{i}, w_{j}\right)}{C\left(w_{i}\right)}
$$

Good-Turing Estimator: Example

r	N_{r}
1	138741
2	25413
3	10531
4	5997
5	3565
6	\ldots

$V=14585$
Seen bigrams $=199252$
$\mathrm{C}($ person she $)=2 \quad \mathrm{C}_{\mathrm{GT}}($ person she $)=(2+1)(10531 / 25413)=1.243$ $\mathrm{C}($ person $)=223 \quad \mathrm{P}($ she|person $)=\mathrm{C}$ Gт $($ person she $) / 223=0.0056$

Good-Turing Estimator

- Intuition: Use n-grams seen once to estimate n-grams never seen and so on
- Compute N_{r} (frequency of frequency r)

$$
N_{r}=\sum_{w_{i} w_{j}: C\left(w_{i} w_{j}\right)} 1
$$

- N_{0} is the number of items with count 0
- N_{1} is the number of items with count 1
-...

Good-Turing Estimator

-What about an unseen bigram?

$$
r^{\prime}=C_{G T}=(0+1) \frac{N_{1}}{N_{0}}=\frac{N_{1}}{N_{0}}
$$

$$
P_{G T}=\frac{C_{G T}}{N}
$$

- Do we know N_{0} ? Can we compute it for bigrams?
$N_{0}=V^{2}-$ bigrams we have seen

Good-Turing Estimator

- For each r, compute an expected frequency estimate (smoothed count)

$$
r^{\prime}=C_{G T}\left(w_{i}, w_{j}\right)=(r+1) \frac{N_{r+1}}{N_{r}}
$$

- Replace MLE counts of seen bigrams with the expected frequency estimates and use those for probabilities

$$
\begin{aligned}
& P_{G T}\left(w_{i}, w_{j}\right)=\frac{C_{G T}\left(w_{i}, w_{j}\right)}{N} \quad P_{G T}\left(w_{j} \mid w_{i}\right)=\frac{C_{G T}\left(w_{i}, w_{j}\right)}{C\left(w_{i}\right)} \\
& \text { What if } w_{i} \text { isn't observed? }
\end{aligned}
$$

Good-Turing Estimator

- Can't replace all MLE counts
- What about $r_{\text {max }}$?
- $N_{r+1}=0$ for $r=r_{\text {max }}$
- Solution 1: Only replace counts for $r<k(\sim 10)$
- Solution 2: Fit a curve S through the observed $\left(r, N_{r}\right)$ values and use $S(r)$ instead
- For both solutions, remember to do what?
- Bottom line: the Good-Turing estimator is not used by itself but in combination with other techniques

Agenda: Summary

- Language Models
- Assign probabilities to sequences of tokens
- N-gram language models
- Consider only limited histories
- Data sparsity
- Smoothing to the rescue!
- Variations on a theme: different techniques for redistributing probability mass
- Important: make sure you still have a valid probability distribution!
- Evaluating LMs

Agenda

- Language Models
- Smoothing
- Combining estimators
- Evaluating LMs

Combining Estimators

- Better models come from:
- Combining n-gram probability estimates from different models
- Leveraging different sources of information for prediction
- Three major combination techniques:
- Simple Linear Interpolation of MLEs
- Katz Backoff
- Kneser-Ney Smoothing

Linear MLE Interpolation

- Mix a trigram model with bigram and unigram models to offset sparsity
- Mix = Weighted Linear Combination
$P\left(w_{k} \mid w_{k-2} w_{k-1}\right)=$

$$
\lambda_{1} P\left(w_{k} \mid w_{k-2} w_{k-1}\right)+\lambda_{2} P\left(w_{k} \mid w_{k-1}\right)+\lambda_{3} P\left(w_{k}\right)
$$

$$
0<=\lambda_{i}<=1 \quad \sum_{i} \lambda_{i}=1
$$

Linear MLE Interpolation

- λ_{i} are estimated on some held-out data set (not training, not test)
- Estimation is usually done via an EM variant or other numerical algorithms (e.g. Powell)

Backoff Models

- Consult different models in order depending on specificity (instead of all at the same time)
- The most detailed model for current context first and, if that doesn't work, back off to a lower model
- Continue backing off until you reach a model that has some counts

Backoff Models

- Important: need to incorporate discounting as an integral part of the algorithm... Why?
- MLE estimates are well-formed...
- But, if we back off to a lower order model without taking something from the higher order MLEs, we are adding extra mass!
- Katz backoff
- Starting point: GT estimator assumes uniform distribution over unseen events... can we do better?
- Use lower order models!

Katz Backoff

- Why use P_{GT} and not $\mathrm{P}_{\text {MLE }}$ directly ?
- If we use $P_{\text {MLE }}$ then we are adding extra probability mass when backing off!
- Another way: Can't save any probability mass for lower order models without discounting
-Why the a's?
- To ensure that total mass from all lower order models sums exactly to what we got from the discounting
$P_{k a t z}(z \mid y)=\left\{\begin{aligned} P_{G T}(z \mid y), & \text { if } C(y, z)>0 \\ \alpha(y) P_{G T}(z), & \text { otherwise }\end{aligned}\right.$

Computational Linguistics 1

Kneser-Ney Smoothing

- Intuition
- Lower order model important only when higher order model is sparse
- Should be optimized to perform in such situations
- Example
- $\mathrm{C}($ Los Angeles $)=\mathrm{C}($ Angeles $)=\mathrm{M} ; \mathrm{M}$ is very large
- "Angeles" always and only occurs after "Los"
- Unigram MLE for "Angeles" will be high and a normal backoff algorithm will likely pick it in any context
- It shouldn't, because "Angeles" occurs with only a single context in the entire training data

Kneser-Ney Smoothing

- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model
- Based on appearance of unigrams in different contexts
- Excellent performance, state of the art

$$
\begin{aligned}
& P_{K N}\left(w_{k} \mid w_{k-1}\right)=\frac{C\left(w_{k-1} w_{k}\right)-D}{C\left(w_{k-1}\right)}+\beta\left(w_{k}\right) P_{C O N T}\left(w_{k}\right) \\
& \quad P_{C O N T}\left(w_{i}\right)=\frac{N\left(\bullet w_{i}\right)}{\sum_{w^{\prime}} N\left(\bullet w^{\prime}\right)} \\
& N\left(\bullet w_{i}\right)=\text { number of different contexts } w_{i} \text { has appeared in }
\end{aligned}
$$

-Why interpolation, not backoff?

Agenda: Summary

- Language Models
- Smoothing
- Evaluating LMs: Perplexity

Evaluating Language Models

- Information theoretic criteria used
- Most common: Perplexity assigned by the trained LM to a test set
- Perplexity: How surprised are you on average by what comes next?
- If the LM is good at knowing what comes next in a sentence \Rightarrow Low perplexity (lower is better)
- Relation to weighted average branching factor

Computing Perplexity

- Given testset W with words w_{1}, \ldots, w_{N}
- Treat entire test set as one word sequence
- Perplexity is defined as the probability of the entire test set normalized by the number of words

$$
P P(T)=P\left(w_{1}, \ldots, w_{N}\right)^{-1 / N}
$$

- Using the probability chain rule and (say) a bigram LM, we can write this as

$$
P P(T)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

- A lot easer to do with log probs!

Practical Evaluation

- Use <s> and </s> both in probability computation
- Count </s> but not <s> in N
- Typical range of perplexities on English text is 50-1000
- Closed vocabulary testing yields much lower perplexities
- Testing across genres yields higher perplexities
- Can only compare perplexities if the LMs use the same vocabulary

Order	Unigram	Bigram	Trigram
PP	962	170	109

Training: $N=38$ million, $V \sim 20000$, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training Test: 1.5 million words, same genre as training

Agenda: Summary

- Language Models
- Assign probabilities to sequences of tokens
- N-gram language models
- Consider only limited histories
- Data sparsity
- Smoothing to the rescue!
- Variations on a theme: different techniques for redistributing probability mass
- Important: make sure you still have a valid probability distribution!
- Evaluating LMs

