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Lecture 5: 15 September  2011 

Agenda 
• Readings 
• HW1 – due next Tuesday 
• Questions? 
•  Language Models 
• Smoothing 
• Evaluating LMs 
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Morphemes to Orthographic Form 
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FSA: English Verb Morphology 
reg-verb-
stem 

irreg-verb-
stem 

irreg-past-
verb 

past past-
part 

pres-
part 

3sg 

walk 
fry 
talk 
impeach 

cut 
catch 
speak 
sing 
eat 

cut 
caught 
spoke 
sang 
ate 

-ed -ed -ing -s 

Lexicon 

Rule 
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morphological only! not orthographic 

Composing Two FSTs 
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Agenda 
• Readings 
• HW1 – due next Tuesday 
• Questions? 
•  Language Models 
• Smoothing 
• Evaluating LMs 
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N-Gram Language Models 
• What?  

•  Language Models assign probabilities to sequences of tokens 

• Why? 
•  Statistical machine translation 
•  Speech recognition 
•  Handwriting recognition 
•  Predictive text input 

• How? 
•  Based on previous word histories 
•  n-gram = consecutive sequences of tokens 
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This is a sentence 

N-Gram Language Models 
N=1 (unigrams) 

Unigrams: 
This, 

is,  
a,  

sentence 

Sentence of length s, how many unigrams? 
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This is a sentence 

N-Gram Language Models 

Bigrams: 
This is, 

is a,  
a sentence 

N=2 (bigrams) 

Sentence of length s, how many bigrams? 
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This is a sentence 

N-Gram Language Models 

Trigrams: 
This is a, 

is a sentence 

N=3 (trigrams) 

Sentence of length s, how many trigrams? 
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Computing Probabilities 

Is this practical? 
No! Can’t keep track of all possible histories of all words! 

[chain rule] 
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Approximating Probabilities 
Basic idea: limit history to fixed number of words N	

(Markov Assumption)	


N=1: Unigram Language Model	
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Approximating Probabilities 
Basic idea: limit history to fixed number of words N	

(Markov Assumption)	


N=2: Bigram Language Model	
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Approximating Probabilities 
Basic idea: limit history to fixed number of words N	

(Markov Assumption)	


N=3: Trigram Language Model	
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Building N-Gram Language Models 
• Use existing sentences to compute n-gram probability 

estimates (training) 
•  Terminology: 

•  N = total number of words in training data (tokens) 
•  V = vocabulary size or number of unique words (types) 
•  C(w1,...,wk) = frequency of n-gram w1, ..., wk in training data 
•  P(w1, ..., wk) = probability estimate for n-gram w1 ... wk 

•  P(wk|w1, ..., wk-1) = conditional probability of producing wk given the 
history w1, ... wk-1 
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Building N-Gram Models 
• Start with what’s easiest! 
• Compute maximum likelihood estimates for individual  

n-gram probabilities 
•  Unigram: 

•  Bigram:  

• Uses relative frequencies as estimates 
• Maximizes the likelihood of the data given the model  

P(D|M) 
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Example: Bigram Language Model 

Note: We don’t ever cross sentence boundaries 

I am Sam 
Sam I am 
I do not like green eggs and ham 

<s> 
<s> 
<s> 

</s> 
</s> 

</s> 

Training Corpus 

P( I | <s> ) = 2/3 = 0.67   P( Sam | <s> ) = 1/3 = 0.33 
P( am | I ) = 2/3 = 0.67   P( do | I ) = 1/3 = 0.33 
P( </s> | Sam )= 1/2 = 0.50   P( Sam | am) = 1/2 = 0.50 
... 

Bigram Probability Estimates 
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Data Sparsity 

P(I like ham) 

= P( I | <s> ) P( like | I ) P( ham | like ) P( </s> | ham ) 

= 0 

P( I | <s> ) = 2/3 = 0.67   P( Sam | <s> ) = 1/3 = 0.33 
P( am | I ) = 2/3 = 0.67   P( do | I ) = 1/3 = 0.33 
P( </s> | Sam )= 1/2 = 0.50   P( Sam | am) = 1/2 = 0.50 
... 

Bigram Probability Estimates 

Why? 
Why is this bad? 
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Data Sparsity 
•  Serious problem in language modeling! 
•  Increase N? 

•  Larger N = more context 
•  Lexical co-occurrences 
•  Local syntactic relations 

•  More context is better? 
•  Larger N = more complex model 

•  For example, assume a vocabulary of 100,000 
•  How many parameters for unigram LM? Bigram? Trigram? 

•  Data sparsity becomes even more severe as N increases 
•  Solution 1: Use larger training corpora 

•  Can’t always work... Blame Zipf’s Law (Looong tail) 
•  Solution 2: Assign non-zero probability to unseen n-grams 

•  Known as smoothing 
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Agenda 
•  Language Models 
• Smoothing 
• Evaluating LMs 
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Smoothing 
•  Zeros are bad for any statistical estimator 

•  Need better estimators because MLEs give us a lot of zeros 
•  A distribution without zeros is “smoother” 

•  The Robin Hood Philosophy: Take from the rich (seen n-
grams) and give to the poor (unseen n-grams) 
•  And thus also called discounting 
•  Critical: make sure you still have a valid probability distribution! 

•  Language modeling: theory vs. practice 
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Laplace’s Law 
• Simplest and oldest smoothing technique 
•  Just add 1 to all n-gram counts including the unseen ones 
• So, what do the revised estimates look like? 
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Laplace’s Law: Probabilities 
Unigrams 

Bigrams 

What if we don’t know V? 

Careful, don’t confuse the N’s! 
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Laplace’s Law 
• Bayesian estimator with uniform priors 
• Moves too much mass over to unseen n-grams 
• What if we added a fraction of 1 instead? 
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Lidstone’s Law of Succession 
• Add 0 < γ < 1 to each count instead 
•  The smaller γ is, the lower the mass moved to the unseen 

n-grams (0=no smoothing) 
•  The case of γ = 0.5 is known as Jeffery-Perks Law or 

Expected Likelihood Estimation 
• How to find the right value of γ? 
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Good-Turing Estimator 
•  Intuition: Use n-grams seen once to estimate n-grams 

never seen and so on 
• Compute Nr (frequency of frequency r) 

 
 
•  N0 is the number of items with count 0 
•  N1 is the number of items with count 1 
•  … 
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Good-Turing Estimator 
•  For each r, compute an expected frequency estimate 

(smoothed count) 
 
 

• Replace MLE counts of seen bigrams with the expected 
frequency estimates and use those for probabilities 
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Good-Turing Estimator 
• What about an unseen bigram? 

• Do we know N0? Can we compute it for bigrams? 
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Good-Turing Estimator: Example 
r	
 Nr	


1	
 138741	


2	
 25413	


3	
 10531	


4	
 5997	


5	
 3565	


6	
 ...	


V = 14585 
Seen bigrams =199252 

C(person she) = 2 
C(person) = 223 

(14585)2 - 199252 

N1 / N0 =  0.00065 
N1 /( N0 N ) =  1.06 x 10-9 

N0 =  

Cunseen = 
Punseen = 

CGT(person she) = (2+1)(10531/25413) = 1.243 
P(she|person) =CGT(person she)/223 = 0.0056 

Note: Assumes mass is uniformly distributed 
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Good-Turing Estimator 
•  For each r, compute an expected frequency estimate 

(smoothed count) 
 
 

• Replace MLE counts of seen bigrams with the expected 
frequency estimates and use those for probabilities 
 

What if wi isn’t observed? 
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Good-Turing Estimator 
• Can’t replace all MLE counts 
• What about rmax? 

•  Nr+1 = 0 for r = rmax 

• Solution 1: Only replace counts for r < k (~10) 
• Solution 2: Fit a curve S through the observed (r, Nr) 

values and use S(r) instead 
•  For both solutions, remember to do what? 
• Bottom line: the Good-Turing estimator is not used by 

itself but in combination with other techniques 
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Agenda 
•  Language Models 
• Smoothing 

•  Combining estimators 

• Evaluating LMs 
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Agenda: Summary 
•  Language Models 

•  Assign probabilities to sequences of tokens 

• N-gram language models 
•  Consider only limited histories 

• Data sparsity 
•  Smoothing to the rescue! 
•  Variations on a theme: different techniques for redistributing 

probability mass 
•  Important: make sure you still have a valid probability distribution! 

• Evaluating LMs 

Computational Linguistics 1 38 

Combining Estimators 
• Better models come from: 

•  Combining n-gram probability estimates from different models 
•  Leveraging different sources of information for prediction 

•  Three major combination techniques: 
•  Simple Linear Interpolation of MLEs 
•  Katz Backoff  
•  Kneser-Ney Smoothing 

Computational Linguistics 1 39 

Linear MLE Interpolation 
• Mix a trigram model with bigram and unigram models to 

offset sparsity 
• Mix = Weighted Linear Combination 
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Linear MLE Interpolation 
•  λi are estimated on some held-out data set (not training, 

not test) 
• Estimation is usually done via an EM variant or other 

numerical algorithms (e.g. Powell) 

Computational Linguistics 1 41 



7 

Backoff Models 
• Consult different models in order depending on specificity 

(instead of all at the same time) 
•  The most detailed model for current context first and, if 

that doesn’t work, back off to a lower model 
• Continue backing off until you reach a model that has 

some counts 
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Backoff Models 
•  Important: need to incorporate discounting as an integral 

part of the algorithm… Why? 
• MLE estimates are well-formed… 
• But, if we back off to a lower order model without taking 

something from the higher order MLEs, we are adding 
extra mass! 

• Katz backoff 
•  Starting point: GT estimator assumes uniform distribution over 

unseen events… can we do better? 
•  Use lower order models! 
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Katz Backoff 

Given a trigram “x y z” 
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Katz Backoff 
• Why use PGT and not PMLE directly ? 

•  If we use PMLE then we are adding extra probability mass when 
backing off! 

•  Another way: Can’t save any probability mass for lower order 
models without discounting 

• Why the α’s? 
•  To ensure that total mass from all lower order models sums exactly 

to what we got from the discounting 
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Kneser-Ney Smoothing 
• Observation: 

•  Average Good-Turing discount for r ≥ 3 is largely constant over r 
•  So, why not simply subtract a fixed discount D (≤1) from non-zero 

counts? 

• Absolute Discounting: discounted bigram model, back off 
to MLE unigram model 

• Kneser-Ney: Interpolate discounted model with a special 
“continuation” unigram model 
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Kneser-Ney Smoothing 
•  Intuition 

•  Lower order model important only when higher order model is 
sparse 

•  Should be optimized to perform in such situations  

• Example 
•  C(Los Angeles) = C(Angeles) = M; M is very large 
•  “Angeles” always and only occurs after “Los” 
•  Unigram MLE for “Angeles” will be high and a normal backoff 

algorithm will likely pick it in any context 
•  It shouldn’t, because “Angeles” occurs with only a single context in 

the entire training data 
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Kneser-Ney Smoothing 
• Kneser-Ney: Interpolate discounted model with a special 

“continuation” unigram model 
•  Based on appearance of unigrams in different contexts 
•  Excellent performance, state of the art 

• Why interpolation, not backoff? 
= number of different contexts wi has appeared in 
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Explicitly Modeling OOV 
•  Fix vocabulary at some reasonable number of words 
• During training: 

•  Consider any words that don’t occur in this list as unknown or out 
of vocabulary (OOV) words 

•  Replace all OOVs with the special word <UNK> 
•  Treat <UNK> as any other word and count and estimate 

probabilities 

• During testing: 
•  Replace unknown words with <UNK> and use LM 
•  Test set characterized by OOV rate (percentage of OOVs) 
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Agenda: Summary 
•  Language Models 
• Smoothing 
• Evaluating LMs: Perplexity 
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Evaluating Language Models 
•  Information theoretic criteria used 
• Most common: Perplexity assigned by the trained LM to a 

test set 
• Perplexity: How surprised are you on average by what 

comes next ? 
•  If the LM is good at knowing what comes next in a sentence ⇒ Low 

perplexity (lower is better) 
•  Relation to weighted average branching factor 
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Computing Perplexity 
• Given testset W with words w1, ...,wN 

•  Treat entire test set as one word sequence 
• Perplexity is defined as the probability of the entire test 

set normalized by the number of words 
 

• Using the probability chain rule and (say) a bigram LM, we 
can write this as  

• A lot easer to do with log probs! 
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Practical Evaluation 
• Use <s> and </s> both in probability computation 
• Count </s> but not <s> in N 
•  Typical range of perplexities on English text is 50-1000 
• Closed vocabulary testing yields much lower perplexities 
•  Testing across genres yields higher perplexities 
• Can only compare perplexities if the LMs use the same 

vocabulary 
 

Training:  N=38 million, V~20000, open vocabulary, Katz backoff where applicable 
Test: 1.5 million words, same genre as training 

Order	
 Unigram	
 Bigram	
 Trigram	


PP	
 962	
 170	
 109	
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Typical “State of the Art” LMs 
•  Training 

•  N = 10 billion words, V = 300k words 
•  4-gram model with Kneser-Ney smoothing 

•  Testing 
•  25 million words, OOV rate 3.8% 
•  Perplexity ~50 
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Agenda: Summary 
•  Language Models 

•  Assign probabilities to sequences of tokens 

• N-gram language models 
•  Consider only limited histories 

• Data sparsity 
•  Smoothing to the rescue! 
•  Variations on a theme: different techniques for redistributing 

probability mass 
•  Important: make sure you still have a valid probability distribution! 

• Evaluating LMs 
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