Computational Linguistics 1 CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland Lecture 6: 20 September 2011

Homework Agenda

- HW0 graded http://grades.cs.umd.edu · Comments from the TA • HW1 - due today! Observations HW2 – assigned Thursday, due next Thursday 9/29 · Questions, comments, concerns? · Language Models
- Part-of-speech Tagging

Computational Linguistics 1

Agenda

- Language Models
- · Higher n-gram models
- Smoothing
- Combining estimators
- Backoff • 00Vs

Computational Linguistics 1

 Evaluating LMs Part-of-speech Tagging

Higher n-gram LM Generators

- · Generated by a unigram LM:
 - because regime more likely where clothing for racial 's politicians % . who 're <unk> with in , human economic some into unit Clark <unk> for 's to . They that securities East % compared <unk> As The to to in Ivan its 7.20 at measures 17 seven prediction on 43-foot in a . the and Lipton Most % precarious in
- Generated by a bigram LM:
- But he has eaten .
 When it first time it is to issue
- In Direct disaster closed yesterday 's \$ 2,000 orders in a percentage of fighting quality output.
- · Generated by a trigram LM:
- Imperial troublesome Oakland .)
 So what 's capital stock market .
- The company noted that the state can be discussed researchers have run last long impasse between 1986 and end of last year .
- State-of-the-art

utational Linguistics 1

Higher n-gram LM Generators

- · Generated by a (smoothed) trigram LM:
- · Imperial troublesome Oakland .) . So what 's capital stock market .
- The company noted that the state can be discussed researchers have run last long impasse between 1986 and end of last year .
- · Generated by an unsmoothed trigram LM:
- He adds that spending on the <unk> are beginning to produce a staunchly conservative younger generation.
- In Japan , which would have to be proved right he tried to rally support in the junk bond market .
- · So why smooth?
- · LMs as acceptors

Computational Linguistics 1

Agenda

- Language Models
 - Smoothing Combining estimators
 - Backoff
 - OOVs
- Evaluating LMs
- Part-of-speech Tagging

Computational Linguistics 1

Combining Estimators

- Three major combination techniques:
 Simple Linear Interpolation of MLEs
- Katz Backoff
- Kneser-Ney Smoothing

Linear MLE Interpolation

Mix higher n-gram models with lower n-gram models
 To offset sparsity

 $P(w_k|w_{k-2}w_{k-1}) =$

 $\lambda_1 P(w_k | w_{k-2} w_{k-1}) + \lambda_2 P(w_k | w_{k-1}) + \lambda_3 P(w_k)$

$$0 <= \lambda_i <= 1 \qquad \qquad \sum_i \lambda_i = 1$$

Computational Linguistics 1

Backoff Models

- Consult higher n-gram models first, then if counts are 0, back off to a lower-order model (instead of consulting all models at the same time)
- · Continue "backing off" until you reach a model that has non-zero counts
- Need to incorporate discounting as a part of the algorithm
- Because if we back off to a lower-order model without taking something from the higher-order models, we are adding extra mass!

Absolute & Kneser-Ney Smoothing

Observation:

Computational Linguistics 1

- Average Good-Turing discount for r ≥ 3 is largely constant over r
 So, why not simply subtract a fixed discount D (≤1) from non-zero counts?
- Absolute Discounting: discounted bigram model, back off to MLE unigram model
- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model

Computational Linguistics 1

Kneser-Ney Smoothing

Intuition

Computational Linguistics 1

- Lower order model important only when higher order model is sparse
- · Should be optimized to perform in such situations

Example

- C(Los Angeles) = C(Angeles) = M; M is very large
- "Angeles" always and only occurs after "Los"
- Unigram MLE for "Angeles" will be high and a normal backoff
- algorithm will likely pick it in any context
- It shouldn't, because "Angeles" occurs with only a single context in the entire training data

Computational Linguistics 1

Modeling OOVs

- Take vocabulary list, truncate at some reasonable number of words
 - Or frequency of words: i.e., remove words that occur fewer than 5 times
- · During training:
 - Consider any words that don't occur in this list as unknown or out of vocabulary (OOV) words
- Replace all OOVs with the special word <UNK>
- $\boldsymbol{\cdot}$ Treat <UNK> as any other word to count and estimate probabilities
- During testing:
- Replace unknown words with <UNK> and use LM
- Test set characterized by OOV rate (percentage of OOVs)

omputational Linguistics 1

Better Modeling of OOVs?

- Orthography
- · -ing words vs -ion words
- stemming
- · Surrounding context
- Previous word, previous two words
- Next word, next two words
- Sentence position

Agenda

- Language Models
- Smoothing
 Combining estimators
- Backoff
- OOVs

utational Linguistics 1

- Evaluating LMs: Perplexity
- Part-of-speech Tagging

Computational Linguistics 1

Evaluating LMs

- Why evaluate LMs?
- For profit!
- · Intrinsic vs extrinsic evaluation
- Extrinsic
- If I use LM₁ in my MT pipeline, do I do better than if I use LM₂?
- Intrinsic: Perplexity
- · Evaluate against a test sentence
- "How surprised are you on average by what comes next in the sentence?"
- · Lower is better. (Less surprised/better predictor.)

Computational Linguistics 1

Computing Perplexity

- Given testset W with words $w_1, ..., w_N$
- Treat entire test set as one word sequence
- Perplexity is defined as the probability of the entire test set normalized by the number of words

$$PP(T) = P(w_1, \dots, w_N)^{-1/N}$$

 \bullet Using the probability chain rule and (say) a bigram LM, we can write this as

$$PP(T) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

· A lot easer to do with log probs!

Computational Linguistics 1

Practical Evaluation					
 Typical range of perplexities on English text is 50-1000 Closed vocabulary testing yields much lower perplexities Testing across genres yields higher perplexities Can only compare perplexities if the LMs use the same vocabulary 					
	Order	Unigram	Bigram	Trigram	
	PP	962	170	109]
Training: N=38 million, V~20000, open vocabulary, Katz backoff where applicable Test: 1.5 million words, same genre as training					

Typical "State of the Art" LMs

Training

- N = 10 billion words, V = 300k words
- · 4-gram model with Kneser-Ney smoothing
- Testing
- 25 million words, OOV rate 3.8%
- Perplexity ~50

Computational Linguistics 1

- For MT systems at UMD
- 5-gram model with Kneser-Ney smoothing
- · Computationally, required more memory than we had!

Agenda: LM Summary

Language Models

Computational Linguistics 1

- · Assign probabilities to sequences of tokens
- N-gram language models
- · Consider only limited histories
- Data sparsity
- Smoothing to the rescue!
- · Variations on a theme: different techniques for redistributing probability mass
- Important: make sure you still have a valid probability distribution!
- Evaluating LMs

Computational Linguistics 1

- OOVs

nputational Linguistics 1

- Evaluating LMs: Perplexity
- Part-of-speech Tagging

Part-of-speech (POS) Tagging

- "Classes" of words
- 8 parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, participle, article
- Verbs are actions
- · Adjectives are properties
- Nouns are things
- Mad Libs??

Computational Linguistics 1

I LIKE TO WHAT TAKE NOUNS AND DJECTIVES AND USE THEM 5 VERBS. REMEMBER MAYBE WE CAN EVENTUALLY MAKE LANGUAGE & COMPLETE IMPEDIMENT TO UNDERSTANDING VERBING WEIRDS CA

Better Modeling of OOVs?

- Orthography
- · -ing words vs -ion words
- stemming
- Surrounding context
- · Previous word, previous two words
- Next word, next two words
- Sentence position
- What happens if we add POS-tag information?

Computational Linguistics 1

How do we define POS?

(Next time!!)

27