Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland
Lecture 6: 20 September 2011

Homework Agenda

- HWO - graded
- http://grades.cs.umd.edu
- Comments from the TA
- HW1 - due today!
- Observations
- HW2 - assigned Thursday, due next Thursday 9/29
- Questions, comments, concerns?
- Language Models
- Part-of-speech Tagging

Higher n-gram LM Generators

- Generated by a unigram LM:
because regime more likely where clothing for racial 's politicians $\%$. who
- 're <unk> with in, human economic some into unit Clark <unk> for 's to. They that securities East \% compared <unk> As The to to in Ivan its 7.20 at measures 17 seven prediction on 43 -foot in a . the and Lipton Most $\%$ precarious in
- Generated by a bigram LM:

But he has eaten
When it first time it is to issue
In Direct disaster closed yesterday 's $\$ 2,000$ orders in a percentage of fighting quality output.

- Generated by a trigram LM

So what 's capital stock market.
So what 's capital stock market
The company noted that the state can be discussed researchers have run last long impasse between 1986 and end of last year

- State-of-the-art

Agenda

- Language Models
- Smoothing
- Combining estimators
- Backoff
- oovs
- Evaluating LMs
- Part-of-speech Tagging

He adds that spending on the <unk> are beginning to produce a staunchly He adds that spending on the <unk>
conservative younger generation.
In Japan, which would have to be proved right - he tried to rally support in the junk bond market .

- So why smooth?
- LMs as acceptors

Generated by a (smoothed) trigram LM

- Imperial troublesome Oakland.)

So what 's capital stock market

- The company noted that the state can be discussed researchers have run last long impasse between 1986 and end of last year
- Generated by an unsmoothed trigram LM:
ecn ragging
\square

Combining Estimators

- Three major combination techniques:
- Simple Linear Interpolation of MLEs
- Katz Backoff
- Kneser-Ney Smoothing

Backoff Models

- Consult higher n-gram models first, then if counts are 0 , back off to a lower-order model
(instead of consulting all models at the same time)
- Continue "backing off" until you reach a model that has non-zero counts
- Need to incorporate discounting as a part of the algorithm
- Because if we back off to a lower-order model without taking something from the higher-order models, we are adding extra mass!

Absolute \& Kneser-Ney Smoothing

- Observation:
- Average Good-Turing discount for $r \geq 3$ is largely constant over r
- So, why not simply subtract a fixed discount $D(\leq 1)$ from non-zero counts?
- Absolute Discounting: discounted bigram model, back off to MLE unigram model
- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model

Linear MLE Interpolation

- Mix higher n-gram models with lower n-gram models - To offset sparsity
-

$$
P\left(w_{k} \mid w_{k-2} w_{k-1}\right)=
$$

$$
\lambda_{1} P\left(w_{k} \mid w_{k-2} w_{k-1}\right)+\lambda_{2} P\left(w_{k} \mid w_{k-1}\right)+\lambda_{3} P\left(w_{k}\right)
$$

$$
0<=\lambda_{i}<=1 \quad \sum_{i} \lambda_{i}=1
$$

Katz Backoff

Given a trigram "x y z"
Why $P_{G T}$ instead of $P_{M L E}$? To reserve

$P_{k a t z}(z \mid x, y)=\left\{\begin{aligned}\left.P_{G T}(z) x, y\right), & \text { if } C(x, y, z)>0 \\ \alpha(x, y) P_{\text {kat }}(z \mid y), & \text { otherwise }\end{aligned}\right.$
$P_{\text {katz }}(z \mid y)=\left\{\begin{aligned} P_{\text {GX }}(z \mid y), & \text { if } C(y, z)>0 \\ \alpha(y) P_{G}(z), & \text { otherwise }\end{aligned}\right.$
Why a's? So lower-order models' mass sums to what we stole by discounting.

Kneser-Ney Smoothing

- Intuition
- Lower order model important only when higher order model is sparse
- Should be optimized to perform in such situations
- Example
- $\mathrm{C}($ Los Angeles $)=\mathrm{C}($ Angeles $)=\mathrm{M} ; \mathrm{M}$ is very large
- "Angeles" always and only occurs after "Los"
- Unigram MLE for "Angeles" will be high and a normal backoff algorithm will likely pick it in any context
- It shouldn't, because "Angeles" occurs with only a single context in the entire training data

Kneser-Ney Smoothing

- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model
- Based on appearance of unigrams in different contexts
- Excellent performance, state of the art

$$
\begin{aligned}
& P_{K N}\left(w_{k} \mid w_{k-1}\right)=\frac{C\left(w_{k-1} w_{k}\right)-D}{C\left(w_{k-1}\right)}+\beta\left(w_{k}\right) P_{C O N T}\left(w_{k}\right) \\
& \quad P_{C O N T}\left(w_{i}\right)=\frac{N\left(\bullet w_{i}\right)}{\sum_{w^{\prime}} N\left(\bullet w^{\prime}\right)} \\
& N\left(\bullet w_{i}\right)=\text { number of different contexts } w_{i} \text { has appeared in }
\end{aligned}
$$

-Why interpolation, not backoff?

Modeling OOVs

- Take vocabulary list, truncate at some reasonable number of words
- Or frequency of words: i.e., remove words that occur fewer than 5 times
- During training:
- Consider any words that don't occur in this list as unknown or out of vocabulary (OOV) words
- Replace all OOVs with the special word <UNK>
- Treat <UNK> as any other word to count and estimate probabilities
- During testing:
- Replace unknown words with <UNK> and use LM
- Test set characterized by OOV rate (percentage of OOVs)

Better Modeling of OOVs?

- Orthography
- -ing words vs -ion words
- stemming
- Surrounding context
- Previous word, previous two words
- Next word, next two words
- Sentence position

Evaluating LMs

- Why evaluate LMs?
- For profit!
- Intrinsic vs extrinsic evaluation
- Extrinsic
- If I use LM_{1} in my MT pipeline, do I do better than if I use LM_{2} ?
- Intrinsic: Perplexity
- Evaluate against a test sentence
- "How surprised are you on average by what comes next in the sentence?"
- Lower is better. (Less surprised/better predictor.)

Computing Perplexity

- Given testset W with words w_{1}, \ldots, w_{N}
- Treat entire test set as one word sequence
- Perplexity is defined as the probability of the entire test set normalized by the number of words

$$
P P(T)=P\left(w_{1}, \ldots, w_{N}\right)^{-1 / N}
$$

- Using the probability chain rule and (say) a bigram LM, we can write this as

$$
P P(T)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

- A lot easer to do with log probs!

Practical Evaluation

- Typical range of perplexities on English text is 50-1000
- Closed vocabulary testing yields much lower perplexities
- Testing across genres yields higher perplexities
- Can only compare perplexities if the LMs use the same vocabulary

Order	Unigram	Bigram	Trigram
PP	962	170	109

Training: $N=38$ million, $V-20000$, open vocabulary, Katz backoff where applicable Test: 1.5 million words, same genre as training
Computational Linguistics 1

Typical "State of the Art" LMs

- Training
- $\mathrm{N}=10$ billion words, $\mathrm{V}=300 \mathrm{k}$ words
- 4-gram model with Kneser-Ney smoothing
- Testing
- 25 million words, OOV rate 3.8%
- Perplexity ~50
- For MT systems at UMD
- 5-gram model with Kneser-Ney smoothing
- Computationally, required more memory than we had!

Agenda
Ag
• Language Models
• Combining estimators
• Backoff
• Oovs
• Evaluating LMs: Perplexity
Part-of-speech Tagging
computational Linguistics 1

How do we define POS?

- (Next time!!)

