Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies University of Maryland

Lecture 8: 27 September 2011

Agenda

- HW2 - due Thursday
- Questions, comments, concerns?
- Markov Chains
- Hidden Markov Models (HMMs)
- Forward Algorithm, Viterbi Algorithm (next time)

Elements of a Markov Model (Chain):		
- clock$t=\{1,2,3, \ldots T\}$		
- N states $Q=\{1,2,3, \ldots N\}$ the single state j at time t is referred to as q_{t}		
- N events$E=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{N}\right\}$		
- initial probabilities$\pi_{\mathrm{j}}=P\left[q_{1}=j\right]$$1 \leq j \leq N$		
- transition probabilities$a_{i j}=P\left[q_{t}=j \mid q_{t-1}=i\right] \quad 1 \leq i, j \leq N$		
		5

Elements of a Markov Model (chain):

- the (potentially) occupied state at time \boldsymbol{t} is called \boldsymbol{q}_{t}
- a state can referred to by its index, e.g. $q_{t}=j$
- 1 event corresponds to 1 state:

At each time t, the occupied state outputs ("emits") its corresponding event.

- Markov model is generator of events.
- each event is discrete, has single output.
- in typical finite-state machine, actions occur at transitions, but in most Markov Models, actions occur at each state.

Transition Probabilities:

- no assumptions (full probabilistic description of system):
$P\left[q_{t}=j \mid q_{t-1}=i, q_{t-2}=k, \ldots, q_{1}=m\right]$
- usually use first-order Markov Model: $P\left[q_{t}=j \mid q_{t-1}=i\right]=a_{i j}$
- first-order assumption:
transition probabilities depend only on previous state (and time)
- $a_{i j}$ obeys usual rules:
$a_{i j} \geq 0 \quad \forall i$,
$\sum_{j=1}^{N} a_{i j}=1 \quad \forall i$
- sum of probabilities leaving a state $=1$ (must leave a state)

Example 3: Portland Winter Weather (con't)

$\cdot \mathrm{S}_{1}=$ event $_{1}=$ rain
$\mathrm{S}_{2}=$ event $_{2}=$ clouds
$\mathrm{S}_{3}=$ event $_{3}=$ sunny

.40 \& .50 \& .10

.20 \& .70 \& .10\end{array}\right)\)| $\pi_{1}=0.5$ |
| :--- |
| $\pi_{2}=0.4$ |
| $\pi_{3}=0.1$ |

- what is probability of \{sun, sun, sun, rain, clouds, sun, sun\}?
$\left.\begin{array}{lllllll}\text { Obs. } & =\{\mathbf{s}, & \mathbf{s}, & \mathbf{s}, & \mathbf{r}, & \mathbf{c}, & \mathbf{s}, \\ \mathbf{s}\end{array}\right\}$
time $=\{1,2,3,4,5,6,7\}$ (days)
$=P\left[\mathrm{~S}_{3}\right] P\left[\mathrm{~S}_{3} \mid \mathrm{S}_{3}\right] P\left[\mathrm{~S}_{3} \mid \mathrm{S}_{3}\right] P\left[\mathrm{~S}_{1} \mid \mathrm{S}_{3}\right] P\left[\mathrm{~S}_{2} \mid \mathrm{S}_{1}\right] P\left[\mathrm{~S}_{3} \mid \mathrm{S}_{2}\right] P\left[\mathrm{~S}_{3} \mid \mathrm{S}_{3}\right]$
$=0.1 \cdot 0.1 \cdot 0.1 \cdot 0.2 \cdot 0.25 \cdot 0.1 \cdot 0.1$
$=5.0 \times 10^{-7}$

Example 4: Marbles in Jars (con't)

$$
\begin{aligned}
& \cdot \mathrm{S}_{1}=\text { event }_{1}=\text { black } \\
& \mathrm{S}_{2}=\text { event }_{2}=\text { white } \\
& \mathrm{S}_{3}=\text { event }_{3}=\text { grey }
\end{aligned} \quad A=\left\{a_{i j}\right\}=\left(\begin{array}{ccc}
.60 & .30 & .10 \\
.20 & .60 & .20 \\
.10 & .30 & .60
\end{array}\right) \quad \begin{aligned}
& \pi_{1}=0.33 \\
& \pi_{2}=0.33 \\
& \pi_{3}=0.33
\end{aligned}
$$

- what is probability of \{grey, white, white, black, black, grey\}?

$$
\text { Obs. }=\{g, w, w, b, b, g\}
$$

$$
S=\left\{S_{3}, S_{2}, S_{2}, S_{1}, S_{1}, S_{3}\right\}
$$

$=P\left[S_{3}\right] P\left[S_{2} \mid S_{3}\right] P\left[S_{2} \mid S_{2}\right] P\left[S_{1} \mid S_{2}\right] P\left[S_{1} \mid S_{1}\right] P\left[S_{3} \mid S_{1}\right]$
$=0.33 \cdot 0.3 \cdot 0.6 \cdot 0.2 \cdot 0.6 \cdot 0.1$
$=0.0007128$

Example 3: Portland Winter Weather (con't)
$\begin{aligned} & \cdot \mathbf{S}_{1}=\text { event }_{1}=\text { rain } \\ & \mathbf{S}_{2}=\text { event }_{2}=\text { clouds } \\ & \mathbf{S}_{3}=\text { event }_{3}=\text { sun }\end{aligned} \quad A=\left\{a_{i j}\right\}=\left(\begin{array}{lll}.70 & .25 & .05 \\ .40 & .50 & .10 \\ .20 & .70 & .10\end{array}\right) \begin{aligned} & \pi_{1}=0.5 \\ & \pi_{2}=0.4 \\ & \pi_{3}=0.1\end{aligned}$

- what is probability of \{rain, rain, rain, clouds, sun, clouds, rain\}?

Obs. $=\left\{\begin{array}{lll}\text { r, } & \mathbf{r}, \mathrm{r}, \mathrm{s}, \mathrm{c}, \mathrm{r}\}\end{array}\right.$
$\mathrm{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{1}, S_{1}, S_{2}, S_{3}, S_{2}, S_{1}\right\}$
time $=\{1,2,3,4,5,6,7\}$ (days)
$=P\left[S_{1}\right] P\left[S_{1} \mid S_{1}\right] P\left[S_{1} \mid S_{1}\right] P\left[S_{2} \mid S_{1}\right] P\left[S_{3} \mid S_{2}\right] P\left[S_{2} \mid S_{3}\right] P\left[S_{1} \mid S_{2}\right]$
$=0.5 \cdot 0.7 \cdot 0.7 \cdot 0.25 \cdot 0.1 \cdot 0.7 \cdot 0.4$
$=0.001715$

$$
\text { time }=\{1,2,3,4,5,6\}
$$

Example 4A: Marbles in Jars
What is probability of:
\{w, g, b, b, w \}
given each model ("lazy" and "random")?

$\begin{array}{ll} \text { S } & =\left\{S_{2}, S_{3}, S_{1}, S_{1}, S_{2}\right\} \\ \text { time } & =\{1,2,3,4,5\} \end{array}$	
$\begin{aligned} & \text { "lazy" } \\ & =P\left[S_{2}\right] P\left[S_{3} \mid S_{2}\right] P\left[S_{1} \mid S_{3}\right] P\left[S_{1} \mid S_{1}\right] P\left[S_{2} \mid S_{1}\right] \\ & =0.33 \cdot 0.2 \cdot 0.1 \cdot 0.6 \cdot 0.3 \\ & =0.001188 \end{aligned}$	$\begin{array}{\|l} \quad \text { "random" } \\ = \\ =P\left[S_{2}\right] P\left[S_{3} \mid S_{2}\right] P\left[S_{1} \mid S_{3}\right] P\left[S_{1} \mid S_{1}\right] P\left[S_{2} \mid S_{1}\right] \\ = \\ =0.33 \cdot 0.33 \cdot 0.33 \cdot 0.33 \cdot 0.33 \\ = \end{array}$

$\{\mathbf{w}, \mathrm{g}, \mathrm{b}, \mathrm{b}, \mathrm{w}\}$ has greater probability if generated by "random." \Rightarrow "random" model more likely to generate $\{w, g, b, b, w\}$.

Notes:

- Independence is assumed between events that are separated by more than one time frame, when computing probability of sequence of events (for first-order model).
- Given list of observations, we can determine exact state sequence that generated those observations.
\Rightarrow state sequence not hidden.
- Each state associated with only one event (output).
- Computing probability given a set of observations and a model is straightforward.
- Given multiple Markov Models and an observation sequence, it's easy to determine the M.M. most likely to have generated the data.

Agenda
• HW2 - due Thursday
• Questions, comments, concerns?
• Markov Chains
• Hidden Markov Models (HMMs)
computational Linguistics 1

Elements of a Hidden Markov Model:

- clock
- N states

$$
t=\{1,2,3, \ldots T\}
$$

- M events
- initial probabilities
- transition probabilities
- observation probabilities
$b_{j}(k)=P\left[o_{t}=e_{k} \mid q_{t}=j\right] \quad 1 \leq k \leq M$
$b_{j}\left(o_{t}\right)=P\left[o_{t}=e_{k} \mid q_{t}=j\right] \quad 1 \leq k \leq M$
- $A=$ matrix of $a_{i j}$ values, $B=$ set of observation probabilities, $\pi=$ vector of π_{j} values.
Entire Model: $\quad \lambda=(A, B, \pi)$

Notes:

- an HMM still generates observations, each state is still discrete, observations can still come from a finite set (discrete HMMs).
- the number of items in the set of events does not have to be the same as the number of states.
- when in state S,
there's $p\left(e_{1}\right)$ of generating event 1 ,
there's $p\left(e_{2}\right)$ of generating event 2 , etc.

The probability of both O and q occurring simultaneously is:

$$
P(\mathbf{O}, \mathbf{q} \mid \lambda)=P(\mathbf{O} \mid \mathbf{q}, \lambda) P(\mathbf{q} \mid \lambda)
$$

which can be expanded to:

$$
P(\mathbf{O}, \mathbf{q} \mid \lambda)=\pi_{q 1} \cdot b_{q_{1}}\left(\mathbf{o}_{1}\right) \cdot a_{q_{1} q_{2}} \cdot b_{q_{2}}\left(\mathbf{o}_{2}\right) \cdot a_{q_{2} q_{3}} \ldots a_{q_{T-1} q_{T}} \cdot b_{q_{T}}\left(\mathbf{o}_{T}\right)
$$

Independence between $a_{i j}$ and $b_{j}\left(o_{t}\right)$ is NOT assumed:

$$
P(\mathbf{O}, \mathbf{q} \mid \lambda)=P(\mathbf{O} \mid \mathbf{q}, \lambda) P(\mathbf{q} \mid \lambda)
$$

this is just multiplication rule: $P(A \cap B)=P(A \mid B) P(B)$

Example 1: Marbles in Jars (lazy person)
(assume unlimited number of marbles)

- With the following observation:

- What is probability of this observation, given state sequence $\left\{\begin{array}{lllll} & S_{3} & S_{2} & S_{2} & S_{1} \\ S_{1} & S_{3}\end{array}\right\}$ and the model??
$=b_{3}(\mathrm{~g}) b_{2}(\mathrm{w}) b_{2}(\mathrm{w}) b_{1}(\mathrm{~b}) b_{1}(\mathrm{~b}) b_{3}(\mathrm{~g})$
$=0.7 \cdot 0.5 \cdot 0.5 \cdot 0.8 \cdot 0.8 \cdot 0.7$
$=0.0784$

Some math...
With an observation sequence $O=\left(o_{1} o_{2} \ldots o_{T}\right)$, state sequence $\mathrm{q}=\left(q_{1} q_{2} \ldots q_{T}\right)$, and model λ :

Probability of O, given state sequence q and model λ, is:

$$
P(\mathbf{O} \mid \mathbf{q}, \lambda)=\prod_{t=1}^{T} P\left(\mathbf{o}_{t} \mid q_{t}, \lambda\right)
$$

assuming independence between observations. This expands:

$$
\begin{gathered}
P(\mathbf{O} \mid \mathbf{q}, \lambda)=p\left(\mathbf{o}_{1} \mid q_{1}\right) \cdot p\left(\mathbf{o}_{2} \mid q_{2}\right) \ldots \cdot p\left(\mathbf{o}_{T} \mid q_{T}\right) \\
- \text { or }- \\
P(\mathbf{O} \mid \mathbf{q}, \lambda)=b_{q_{1}}\left(\mathbf{o}_{1}\right) \cdot b_{q_{2}}\left(\mathbf{o}_{2}\right) \ldots b_{q_{T}}\left(\mathbf{o}_{T}\right)
\end{gathered}
$$

The probability of the state sequence q can be written:

$$
P(\mathbf{q} \mid \lambda)=\pi_{q_{1}} \cdot a_{q_{1} q_{2}} \cdot a_{q_{2} q_{3}} \ldots a_{q_{T-1} q_{T}}
$$

HMM Example 2: Weather and Atmospheric Pressure

HMM Example 2: Weather and Atmospheric Pressure
What is probability of $\mathrm{O}=$ \{sun, sun, cloud, rain, cloud, sun\} and the sequence $\{H, M, M, L, L, M\}$, given the model?
$=\pi_{H} \cdot b_{\mathrm{H}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{HM}} \cdot b_{\mathrm{M}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{MM}} \cdot b_{\mathrm{M}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{ML}} \cdot b_{\mathrm{L}}(\mathrm{r}) \cdot \mathrm{a}_{\mathrm{LL}} \cdot b_{\mathrm{L}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{LM}} \cdot b_{\mathrm{M}}(\mathrm{s})$
$=0.4 \cdot 0.8 \cdot 0.3 \cdot 0.3 \cdot 0.2 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.3 \cdot 0.3 \cdot 0.6 \cdot 0.3$
$=1.12 \times 10^{-5}$
What is probability of $\mathrm{O}=$ \{sun, sun, cloud, rain, cloud, sun\} and the sequence $\{H, H, M, L, M, H\}$, given the model?
$=\pi_{H} \cdot b_{\mathrm{H}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{HH}} \cdot b_{\mathrm{H}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{HM}} \cdot b_{\mathrm{M}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{ML}} \cdot b_{\mathrm{L}}(\mathrm{r}) \cdot \mathrm{a}_{\mathrm{LM}} \cdot b_{\mathrm{M}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{MH}} \cdot b_{\mathrm{H}}(\mathrm{s})$
$=0.4 \cdot 0.8 \cdot 0.6 \cdot 0.8 \cdot 0.3 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.6 \cdot 0.4 \cdot 0.3 \cdot 0.6$
$=2.39 \times 10^{-4}$

Notes about HMMs:

- must know all possible states in advance
- must know possible state connections in advance
- cannot recognize things outside of model
- must have some estimate of state emission probabilities and state transition probabilities
- make several assumptions (usually so math is easier)

Agenda

- HW2 - due Thursday
- Markov Chains
- Hidden Markov Models (HMMs)
- Forward Algorithm, Viterbi Algorithm (next time)

