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Markov Chain, Markov Models

A Markov Model (Markov Chain) is:
- similar to a finite-state automata, with probabilities of
transitioning from one state to another:

« Transition from state to state at discrete time intervals
- Can only be in 1 state at any given time

Elements of a Markov Model (chain):
- the (potentially) occupied state at time t is called q,
- a state can referred to by its index, e.g. q,=j

« 1 event corresponds to 1 state:

At each time t, the occupied state outputs (“emits”)
its corresponding event.

» Markov model is generator of events.
« each event is discrete, has single output.

« in typical finite-state machine, actions occur at transitions,
but in most Markov Models, actions occur at each state.
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Agenda

+ HW2 — due Thursday
 Questions, comments, concerns?
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Elements of a Markov Model (Chain):

« clock
t={1,2,3,.. T}
* N states
Q={1,2,3,.. N}

the single state j at time t is referred to as q,

* N events
E={e ey €; ..., &}

« initial probabilities
m=Plq,=]] 1=<jsN

« transition probabilities
a;=Plq,=j]| Q. =1] 1< ijsN

Transition Probabilities:

» no assumptions (full probabilistic description of system):
Pla:=j| .= i, Q= K, ..., q4=m]

« usually use first-order Markov Model:
Plg,=jlqu=i = a;

« first-order assumption:
transition probabilities depend only on previous state (and time)

* a; obeys usual rules: L= 0 Vi,j
N
Eaif =1 Vi
=1
« sum of probabilities leaving a state = 1
(must leave a state)
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Markov Model Transition Probabilities
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Transition Probabilities

On0:20

p(being in state S, exactly 1 time) =0.1 =0.100
p(being in state S, exactly 2 times) = 0.9 -0.1 =0.090
p(being in state S, exactly 3 times) = 0.9 -0.9 -0.1 =0.081
p(being in state S, exactly 5 times) = 0.9 -0.9 0.1 =0.059
o
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Example 1: Single Fair Coin

0.5 0.5

S, corresponds to e, = Heads a;; =05 a,,
S, corresponds to e, = Tails a, =0.5

» Generate events:
HTHHTHTTTHH
corresponds to state sequence
$18,8/8:8,8,8,8,8, 8§
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Markov Model Transition Probabilities

Probability distribution function:

OnO20

0.4
p(being in state S, exactly 1 time) =0.6 =0.600
p(being in state S, exactly 2 times) = 0.4 0.6 =0.240
p(being in state S, exactly 3 times) = 0.4 -0.4 -0.6 =0.096
p(being in state S, exactly 4 times) = 0.4 -0.4 -0.4 -0.6 =0.038

= exponential decay (characteristic of Markov Models)

Initial Probabilities:
« probabilities of starting in each state at time 1
* denoted by Tr;

'11'j=P[q1=]] 1<jsN

N

. 2n/=1
“~

Example 2: Single Biased Coin (outcome depends on previous result)

S, corresponds to e, = Heads aq,
S, corresponds to e, = Tails ay,

» Generate events:
HHHTTTHHHTTH
corresponds to state sequence
$185,85,8,8,8,85, 88 8, 8,8




Example 3: Portland Winter Weather

Example 3: Portland Winter Weather (con’ t)

+ S, = event, =rain 70 25 05| =05
§, = event, = clouds A={a}= ™, =04
S, = event; = sun 40 50 .10 | me=04

20 .70 .10

+ what is probability of {rain, rain, rain, clouds, sun, clouds, rain}?
bs.={r, r, 1, ¢, s, ¢, r}
S =1{Sy, S, 51, S5 S5, S5, S4}
time ={1, 2, 3, 4, 5, 6, 7} (days)
P[S,] PLS,1S1] P[S1|S1] PIS,|S4] PLS;]S,] PIS,IS;] PIS4IS;]
=05- 07 - 07 - 025- 01 - 07 -04
0.001715

Example 3: Portland Winter Weather (con’ t)

* S, = event, = rain 70 25 05) =05
S,=event,=clouds A={a;}~= m,=04
S, = event; = sunny 40 50 .10 | m=o04

20 .70 .10
» what is probability of {sun, sun, sun, rain, clouds, sun, sun}?
Obs.={s, s, s, , ¢, s, s}
S = {S;, S5, S5, 4, Sy, S, S3}
time ={1, 2, 3, 4, 5, 6, 7} (days)

PLS;] PIS;|Ss] PIS5]S;] PIS:]S5] PLS,|S4] PIS;|S;] PLS;|S;]

=01- 01 - 01 - 02 - 025 - 01 -01

5.0x107

Example 4: Marbles in Jars (con’t)

+ S, = event, = black .60 .30 .10

§, = event, = white A={a}=
S, = event; = grey 20 .60 .20
.10 .30 .60

» what is probability of {grey, white, white, black, black, grey}?
Obs.= {g, w, w, b, b, g}
S ={S;S,8S,S,S;,S;}
time ={1, 2, 3,4, 5, 6}

= P[S;] P[S,|S;] PLS,|S;] PIS;|S,] PIS;|S4] PS;|S1]

=033- 03 - 06 - 02 - 06 - 0.1
= 0.0007128

Example 4: Marbles in Jars (lazy person)
(assume unlimited number of marbles)

Jar1 Jar 3

Example 4A: Marbles in Jars

Jar 2 Jar 3

« Same data, two different models...




Example 4A: Marbles in Jars

What is probability of:
{w, g, b, b, w}
given each model (“lazy” and “random”)?

S ={S; S5, Sy, S, S5}
time ={1,2,3,4,5

“laz, “random”
= P[S;] PIS,|S;] PIS;|S;] PIS;|S1] PIS,|S1] | = P[S;] PIS,|S;] PISy|S;] PIS;|S1] PS,|S1]

0.33:0.2-0.1-0.6-0.3 =0.33-0.33-0.33-0.33-0.33
0.001188 =0.003913

{w, g, b, b, w} has greater probability if generated by “random.”
=“random” model more likely to generate {w, g, b, b, w}.
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Agenda

+ Hidden Markov Models (HMMs)
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Elements of a Hidden Markov Model:

* Mevents E={e;, e, €53 ..., e}

+ observation probabilities  b(k)=Plo,= e, | q,=j] 1sksM
bfo)=Plo,=e,| q=j1 1=k=M

+ A = matrix of a; values, B = set of observation probabilities,
= vector of m; values.

Entire Model: A=(A,B,m)
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Notes:

« Independence is assumed between events that are separated by
more than one time frame, when computing probability of
sequence of events (for first-order model).

« Given list of observations, we can determine exact state sequence
that generated those observations.
=> state sequence not hidden.

« Each state associated with only one event (output).

« Computing probability given a set of observations and a model
is straightforward.

+ Given multiple Markov Models and an observation sequence,
it's easy to determine the M.M. most likely to have generated
the data.
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Hidden Markov Models

» more than 1 event associated with each state.
« all events have some probability of emitting at each state.

« given a sequence of observations, we can't determine exactly
the state sequence.

* We can compute the probabilities of different state sequences
given an observation sequence.
Doubly stochastic (probabilities of both emitting events and

transitioning between states); exact state sequence is “hidden.”
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Notes:

» an HMM still generates observations,
each state is still discrete,
observations can still come from a finite set (discrete HMMs).

« the number of items in the set of events does not have to
be the same as the number of states.

* when in state S,
there's p(e,) of generating event 1,
there's p(e,) of generating event 2, etc.

pss(black) = 0.3

s = 0.y psz(black) = 0.6
51 =y

psz(white) = 0.4
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Example 1: Marbles in Jars (lazy person)

(assume unlimited number of marbles)

State 1 State 2 State 3

Jar1 Jar 2 Jar 3
p(b) =0.8 p(b) =0.2 p(b) =0.1
p(w)=0.1 p(w)=0.5 p(w)=0.2
p(g) =0.1 p(g) =0.3 p(g) =0.7

,=0.33 7,=0.33 7,=0.33
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Example 1: Marbles in Jars (lazy person)
(assume unlimited number of marbles)

» With the same observation:

00Ceeo

gwwbbg

* What is probability of this observation, given state sequence
{S; S; S; S, S; S;} and the model??

=by(9) by(w) bs(w) by(b) by(b) b,(g)
=0.1-01-0.2-0.2-0.1-0.1
=4.0x10¢
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Example 1: Marbles in Jars (lazy person)
(assume unlimited number of marbles)

» With the following observation:

0o0cLCeeo

g ww b bg

» What is probability of this observation, given state sequence
{S; S, S, S; S; S;}and the model??

=bs3(g) by(W) by(W) by(b) by(b) bs(g)
=0.7-0.5-0.5-0.8-0.8-0.7
=0.0784
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Some math...

With an observation sequence O=(o, o, ... 0;), state sequence
q=(q, q; ... q7), and model A:

Probability of O, given state sequence q and model A, is:
T
P(O|q,4) = ]—][P(Ol lq,,2)
assuming independence betweer{:observations. This expands:
P(O|q,4) = p(o,| ql)6€(02 [g5)...- p(o; | qr)
P(O]q,2)=b,(0,)b,(0,)..., (0;)
The probability of the state sequence g can be written:

PQq|A)=x,-a,, a

ki N4> 9293 """ a‘qu‘lr

The probability of both O and q occurring simultaneously is:
P(0,q|4)=P(O|q,4) P(q] )
which can be expanded to:

PO.q|4) =7,-b,(0)a,, b, (0,)a,, .a,,, b, (o)

Independence between a; and b(o,) is NOT assumed:
P(0,q|A)=P(0|q,4) P(q|2)

this is just multiplication rule: P(ANB) = P(A | B) P(B)

31
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HMM Example 2: Weather and Atmospheric Pressure

0.6 0.2
P(4$)=0.1 P(48)-0.3
P(£29)=0.2 P( gg)=0.4
P, =038 P({%)=0.3

=04 P(48)=0.6

= 0.2 P(39=0.3

=04 P({%)=0.1
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HMM Example 2: Weather and Atmospheric Pressure
If weather observation O={sun, sun, cloud, rain, cloud, sun}
what is probability of O, given the model and the sequence
{H, M, M, L, L, M}?
= by(sun) by(sun) by(cloud) b, (rain) b (cloud) by(sun)
=0.8-0.3-04-0.6-03-0.3

=5.2x10"3
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Notes about HMMs:

» must know all possible states in advance

» must know possible state connections in advance
« cannot recognize things outside of model

* must have some estimate of state emission probabilities
and state transition probabilities

» make several assumptions (usually so math is easier)
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HMM Example 2: Weather and Atmospheric Pressure

What is probability of O={sun, sun, cloud, rain, cloud, sun}
and the sequence {H, M, M, L, L, M}, given the model?

= 7y by(S) “aumby(S) -aym bu(c) -ay. by (r) -a by (c) -a y-by(s)
=04-08-03-03-0.2-04-05-06-0.3-0.3-0.6-0.3
=1.12x10"*

What is probability of O={sun, sun, cloud, rain, cloud, sun}
and the sequence {H, H, M, L, M, H}, given the model?

= myby(S) “ayy by(s) “auw bu(c) “ayL by (r) *a ybu(C) “apy-byu(s)
=04-08-0.6-08-03-04-05-06-0.6-0.4-0.3-0.6
=2.39x10*
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« Forward Algorithm, Viterbi Algorithm (next time)
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