Computational Linguistics 1 CMSC/LING 723, LBSC 744

JUNERSITL 18

Kristy Hollingshead Seitz Institute for Advanced Computer Studies University of Maryland Lecture 8: 27 September 2011

Agenda

Computational Linguistics 1

- HW2 due Thursday
- Questions, comments, concerns?
- Markov Chains
- Hidden Markov Models (HMMs)
- Forward Algorithm, Viterbi Algorithm (next time)

Markov Chain, Markov Models

A Markov Model (Markov Chain) is:

• similar to a finite-state automata, with *probabilities* of transitioning from one state to another:

Transition from state to state at discrete time intervals
 Can apply be in 1 at the at any given time

Can only be in 1 state at any given time

Elements of a Markov Model (Chain): • clock $t = \{1, 2, 3, \dots T\}$ • *N* states $Q = \{1, 2, 3, ..., N\}$ the single state *j* at time *t* is referred to as q_t N events $E = \{e_1, e_2, e_3, ..., e_N\}$ initial probabilities $\overline{\pi}_{j} = P[q_{1} = j]$ $1 \le j \le N$ transition probabilities
 a_{ij} = P[q_t = j | q_{t-1} = i] 1 ≤ *i*, *j* ≤ *N*

Elements of a Markov Model (chain):

- the (potentially) occupied state at time t is called q_t
- a state can referred to by its index, e.g. $q_t = j$
- 1 event corresponds to 1 state:
 - At each time *t*, the occupied state outputs ("emits") its corresponding event.
- Markov model is generator of events.
- · each event is discrete, has single output.
- in typical finite-state machine, actions occur at transitions, but in most Markov Models, actions occur at each state.

Transition Probabilities:

- no assumptions (full probabilistic description of system): $P[q_t = j \mid q_{t-1} = i, q_{t-2} = k, ..., q_1 = m]$
- usually use *first-order* Markov Model: $P[q_t = j | q_{t-1} = i] = a_{ij}$

 first-order assumption: transition probabilities depend only on previous state (and time)

• a_{ij} obeys usual rules: $a_{ij} \ge 0 \qquad \forall i, j$

$$\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$$

 sum of probabilities leaving a state = 1 (must leave a state)

- probabilities of starting in each state at time 1
- denoted by π_j

•
$$\pi_j = P[q_1 = j]$$
 $1 \le j \le N$

•
$$\sum_{j=1}^{N} \pi_j = 1$$

• S ₁ = even	t₁ = rain	A = {a } =	(.70	.25	.05	π1 = 0.5
$S_3 = even$ $S_3 = even$	$t_3 = sunny$	A - (a _{ij} r -	.40	.50	.10	$\pi_2 = 0.4$ $\pi_3 = 0.1$
			.20	.70	.10	
S	s. = {s, s, s = {S ₃ , S ₃ , S	s, r, c, s, S₃, S₁, S₂, S₃,	s} 			,,
= PIS-1 P	s. = {s, s, s = {S ₃ , S ₃ , s e = {1, 2, 3	s, r, c, s, S ₃ , S ₁ , S ₂ , S ₃ , S, 4, 5, 6,	s} S ₃ } 7} (da	ys) PIS-IS	5.1 PIS	LIS.I
= <i>P</i> [<i>S</i> ₃] <i>P</i>	s. = {s, s, s = { S_3 , S_3 , S e = {1, 2, 3 [S_3] S_3] P [S_3]S	s, r, c, s, S_3 , S_1 , S_2 , S_3 , S_4 , 5, 6, S_3] $P[S_1 S_3] P$	s} S ₃ } 7} (da P[S ₂ S ₁]	ys) P[S₃ S	S₂] P[S	S ₃ S ₃]
S tim = P[S ₃] P = 0.1 · = 5.0x10	s. = {s, s, s = { S_3 , S_3 , S e = {1, 2, 3 [S_3] S_3] $P[S_3$]S 0.1 · 0.1	s, r, c, s, $S_3, S_1, S_2, S_3, S_4, 5, 6, S_3$ $P[S_1 S_3] P[S_1 S_3] P(S_1 S_3) P($	s} S ₃ } 7} (da P[S ₂ S ₁] 0.25	ys) P[S ₃ S 0.1	5₂] <i>P</i> [S · 0.1	S ₃ S ₃]

• $S_1 = event_1 =$	black	4 - (-) -	6.60	.30	.10)	π ₁ = 0.33
$S_2 = event_2 = S_3 = event_3 =$	grey	$A = \{a_{ij}\}$.20	.60	.20	$\pi_2 = 0.33$ $\pi_3 = 0.33$
			.10	.30	.60	
S = time = = <i>P</i> [<i>S</i> ₃] <i>P</i> [<i>S</i> ₂]	{3 ₃ , S₂, 3 {1, 2, 3, 4 S ₃] <i>P</i> [S₂ S	2, 3, 3, 3, 3, 3 , 5, 6} 2] <i>P</i> [S ₁ S ₂]	⁻ ₃} <i>P</i> [S₁ S₁]	P[S ₃ S	S₁]	
$= 0.33 \cdot 0.3$ = 0.0007128	· 0.6	· 0.2 ·	0.6 ·	0.1		

Notes:

- Independence is assumed between events that are separated by more than one time frame, when computing probability of sequence of events (for first-order model).
- Given list of observations, we can determine exact state sequence that generated those observations.
 state sequence not hidden.
- · Each state associated with only one event (output).
- Computing probability given a set of observations and a model is straightforward.
- Given multiple Markov Models and an observation sequence, it's easy to determine the M.M. most likely to have generated the data.

Agenda

- HW2 due Thursday
- Questions, comments, concerns?
- Markov Chains

Computational Linguistics 1

Hidden Markov Models (HMMs)

Hidden Markov Models

- more than 1 event associated with each state.
- · all events have some probability of emitting at each state.
- given a sequence of observations, we can't determine exactly the state sequence.
- We can compute the probabilities of different state sequences given an observation sequence.

Doubly stochastic (probabilities of both emitting events and transitioning between states); exact state sequence is "hidden."

Elements of a Hidden Markov Model: clock $t = \{1, 2, 3, \dots, T\}$ $Q = \{1, 2, 3, \dots N\}$ N states • M events $E = \{e_1, e_2, e_3, ..., e_M\}$ initial probabilities $\pi_i = P[q_1 = j]$ $1 \le j \le N$ transition probabilities $a_{ij} = P[q_t = j \mid q_{t-1} = i] \quad 1 \le i, j \le N$ $\begin{array}{l} b_j(k) \!=\! P[\mathbf{o}_t \!=\! \mathbf{e}_k \mid q_t \!=\! j] & 1 \leq k \leq M \\ b_j(\mathbf{o}_t) \!=\! P[\mathbf{o}_t \!=\! \mathbf{e}_k \mid q_t \!=\! j] & 1 \leq k \leq M \end{array}$ · observation probabilities • A = matrix of a_{ij} values, B = set of observation probabilities, π = vector of π_j values. Entire Model: $\lambda=(A,B,\pi)$

Notes: • an HMM still generates observations, each state is still discrete, observations can still come from a finite set (discrete HMMs). • the number of items in the set of events does not have to be the same as the number of states. • when in state S, there's $p(e_1)$ of generating event 1, there's $p(e_2)$ of generating event 2, etc. $p_{sr}(black) = 0.3$ $p_{sr}(white) = 0.7$ $p_{sr}(black) = 0.4$

Example 1: Marbles in Jars (lazy person) (assume unlimited number of marbles) • With the same observation: $g \ w \ w \ b \ b \ g$ • What is probability of this observation, given state sequence {S₁ S₁ S₃ S₂ S₃ S₁} and the model?? = $b_1(g) \ b_1(w) \ b_3(w) \ b_2(b) \ b_3(b) \ b_1(g)$ = $0.1 \cdot 0.1 \cdot 0.2 \cdot 0.2 \cdot 0.1 \cdot 0.1$ = $4.0x10^{-6}$

With an observation sequence $O = (o_1 \ o_2 \ \dots \ o_7)$, state sequence $q = (q_1 \ q_2 \ \dots \ q_7)$, and model λ : Probability of O, given state sequence q and model λ , is: $P(O \mid q, \lambda) = \prod_{i=1}^{T} P(o_i \mid q_i, \lambda)$ assuming independence between observations. This expands: $P(O \mid q, \lambda) = p(o_1 \mid q_1) \cdot p(o_2 \mid q_2) \dots \cdot p(o_T \mid q_T)$ $P(O \mid q, \lambda) = b_{q_1}(o_1) \cdot b_{q_2}(o_2) \dots b_{q_T}(o_T)$ The probability of the state sequence q can be written: $P(\mathbf{q} \mid \lambda) = \pi_{q_1} \cdot a_{q_1q_2} \cdot a_{q_2q_3} \dots a_{q_{T-1}q_T}$

HMM Example 2: Weather and Atmospheric Pressure

If weather observation O={sun, sun, cloud, rain, cloud, sun} what is probability of O, given the model and the sequence {H, M, M, L, L, M}?

= $b_{\rm H}(\text{sun}) \ b_{\rm M}(\text{sun}) \ b_{\rm M}(\text{cloud}) \ b_{\rm L}(\text{rain}) \ b_{\rm L}(\text{cloud}) \ b_{\rm M}(\text{sun})$

= 0.8 · 0.3 · 0.4 · 0.6 · 0.3 · 0.3

= 5.2x10⁻³

HMM Example 2: Weather and Atmospheric Pressure

What is probability of O={sun, sun, cloud, rain, cloud, sun} and the sequence {H, M, M, L, L, M}, given the model?

$$\begin{split} &=\pi_{H'}b_{H}(s)\cdot a_{HM'}b_{M}(s)\cdot a_{MM'}b_{M}(c)\cdot a_{ML'}b_{L}(r)\cdot a_{LL'}b_{L}(r)\cdot a_{LM'}b_{M}(s)\\ &=0.4\cdot 0.8\cdot 0.3\cdot 0.3\cdot 0.2\cdot 0.4\cdot 0.5\cdot 0.6\cdot 0.3\cdot 0.3\cdot 0.6\cdot 0.3\\ &=1.12x10^{.5} \end{split}$$

What is probability of O={sun, sun, cloud, rain, cloud, sun} and the sequence {H, H, M, L, M, H}, given the model?

 $= \pi_{H'} b_{H}(s) \cdot a_{HH} \cdot b_{H}(s) \cdot a_{HM'} \cdot b_{M}(c) \cdot a_{ML'} \cdot b_{L}(r) \cdot a_{LM'} \cdot b_{M}(c) \cdot a_{MH'} \cdot b_{H}(s)$ = 0.4 \cdot 0.8 \cdot 0.6 \cdot 0.8 \cdot 0.3 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.4 \cdot 0.3 \cdot 0.6

= 2.39x10⁻⁴

33

Notes about HMMs:

- must know all possible states in advance
- must know possible state connections in advance
- · cannot recognize things outside of model
- must have some estimate of state emission probabilities
 and state transition probabilities
- make several assumptions (usually so math is easier)

Agenda

- HW2 due Thursday
- Markov Chains
- Hidden Markov Models (HMMs)
- Forward Algorithm, Viterbi Algorithm (next time)

omputational Linguistics 1