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Computational Linguistics 1 
CMSC/LING 723, LBSC 744 

Kristy Hollingshead Seitz 
Institute for Advanced Computer Studies 
University of Maryland 
 
Lecture 8: 27 September  2011 

Agenda 
• HW2 – due Thursday 
• Questions, comments, concerns? 
• Markov Chains 
• Hidden Markov Models (HMMs) 
•  Forward Algorithm, Viterbi Algorithm (next time) 
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Markov Chain, Markov Models 
A Markov Model (Markov Chain) is: 
•  similar to a finite-state automata, with probabilities of 

transitioning from one state to another: 

•  Transition from state to state at discrete time intervals 
• Can only be in 1 state at any given time 

3 

S1 S5 S2 S3 S4 

0.5 

0.5 0.3 

0.7 

0.1 

0.9 0.8 

0.2 

1.0 

5 

Elements of a Markov Model (Chain): 

•  clock 
 t = {1, 2, 3, … T} 

 
•  N states 

 Q = {1, 2, 3, … N} 
 the single state j at time t is referred to as qt 

•  N events 
 E = {e1, e2, e3, …, eN} 

•  initial probabilities 
 πj = P[q1 = j]    1 ≤ j ≤ N 

•  transition probabilities 
 aij = P[qt = j | qt-1 = i]   1 ≤  i, j  ≤ N 
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Elements of a Markov Model (chain): 

•  the (potentially) occupied state at time t is called qt 
 
•  a state can referred to by its index, e.g. qt = j 

•  1 event corresponds to 1 state: 
 

 At each time t, the occupied state outputs (“emits”) 
 its corresponding event. 

•  Markov model is  generator  of events. 

•  each event is discrete, has single output. 

•  in typical finite-state machine, actions occur at transitions, 
  but in most Markov Models, actions occur at each state. 
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Transition Probabilities: 
  
•  no assumptions (full probabilistic description of system): 

 P[qt = j | qt-1= i, qt-2= k, … , q1=m] 
 
•  usually use first-order Markov Model: 

  P[qt = j | qt-1= i]     =   aij 

•  first-order assumption: 
 transition probabilities depend only on previous state (and time) 

•  aij obeys usual rules: 
 

•  sum of probabilities leaving a state = 1  
   (must leave a state) 
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Markov Model Transition Probabilities 
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S1 S2 S3 
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0.5 0.3 

0.7 

a11 = 0.0  a12 = 0.5  a13 = 0.5  a1Exit=0.0  Σ=1.0 
a21 = 0.0  a22 = 0.7  a23 = 0.3  a2Exit=0.0  Σ=1.0 
a31 = 0.0  a32 = 0.0  a33 = 0.0  a3Exit=1.0  Σ=1.0 

1.0 

Markov Model Transition Probabilities 
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Probability distribution function: 

S1 S2 S3 0.6 

0.4 

p(being in state S2 exactly 1 time)   = 0.6    = 0.600 
p(being in state S2 exactly 2 times)  = 0.4 ·0.6                = 0.240 
p(being in state S2 exactly 3 times) = 0.4 ·0.4 ·0.6          = 0.096 
p(being in state S2 exactly 4 times) = 0.4 ·0.4 ·0.4 ·0.6  = 0.038 
 
= exponential decay (characteristic of Markov Models) 
 

Transition Probabilities 
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S1 S2 S3 0.1 

0.9 
p(being in state S2 exactly 1 time)   = 0.1            = 0.100 
p(being in state S2 exactly 2 times) = 0.9 ·0.1             = 0.090 
p(being in state S2 exactly 3 times) = 0.9 ·0.9 ·0.1         = 0.081 
p(being in state S2 exactly 5 times) = 0.9 ·0.9 · ...  ·0.1 = 0.059 

a22=0.9 

a22=0.5 

(note: 
in graph, no 
multiplication  
by a23) 

a22=0.7 
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Initial Probabilities: 
  
•  probabilities of starting in each state at time 1 

•  denoted by πj 

•  πj = P[q1 = j]   1 ≤ j ≤ N 

•   1
1

=∑
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Example 1: Single Fair Coin 

S1 S2 

0.5 

0.5 

0.5 0.5 

S1 corresponds to e1 = Heads   a11 = 0.5  a12 = 0.5 
S2 corresponds to e2 = Tails   a21 = 0.5  a22 = 0.5 
 
•  Generate events: 

 H  T  H  H  T  H  T  T  T  H  H 
  corresponds to state sequence 

 S1  S2  S1  S1  S2  S1  S2  S2  S2  S1  S1 
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Example 2: Single Biased Coin (outcome depends on previous result) 

S1 S2 

0.3 

0.4 

0.7 0.6 

S1 corresponds to e1 = Heads   a11 = 0.7  a12 = 0.3 
S2 corresponds to e2 = Tails   a21 = 0.4  a22 = 0.6 
 
•  Generate events: 

 H  H  H  T  T  T  H  H  H  T  T  H 
  corresponds to state sequence 

 S1  S1  S1  S2  S2  S2  S1  S1  S1  S2  S2  S1 
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Example 3: Portland Winter Weather 
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Example 3: Portland Winter Weather (con’t) 

•  S1 = event1 = rain     
   S2 = event2 = clouds       A = {aij} =  
   S3 = event3 = sun   

•  what is probability of {rain, rain, rain, clouds, sun, clouds, rain}? 
 Obs. =  {r,   r,   r,   c,   s,   c,   r} 
 S       =  {S1, S1, S1, S2, S3, S2, S1}   
 time  = {1,   2,   3,   4,   5,   6,   7}  (days) 

   = P[S1] P[S1|S1] P[S1|S1] P[S2|S1] P[S3|S2] P[S2|S3] P[S1|S2] 
 

   =   0.5  ·    0.7   ·    0.7   ·   0.25  ·    0.1   ·    0.7    ·  0.4 
 

   =   0.001715 

10.70.20.
10.50.40.
05.25.70. π1 = 0.5 

π2 = 0.4 
π3 = 0.1 
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Example 3: Portland Winter Weather (con’t) 

•  S1 = event1 = rain     
   S2 = event2 = clouds       A = {aij} =  
   S3 = event3 = sunny   

•  what is probability of {sun, sun, sun, rain, clouds, sun, sun}? 
 Obs. =  {s,   s,   s,   r,   c,   s,   s} 
 S       =  {S3, S3, S3, S1, S2, S3, S3}   
 time  = {1,   2,   3,   4,   5,   6,   7}  (days) 

   = P[S3] P[S3|S3] P[S3|S3] P[S1|S3] P[S2|S1] P[S3|S2] P[S3|S3] 
 

   =   0.1  ·    0.1   ·    0.1   ·    0.2   ·   0.25   ·    0.1    ·  0.1 
 

   =   5.0x10-7 

10.70.20.
10.50.40.
05.25.70. π1 = 0.5 

π2 = 0.4 
π3 = 0.1 
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Example 4: Marbles in Jars (lazy person) 

Jar 1 Jar 2 Jar 3 

S1 S2 

0.3 

0.2 

0.6 0.6 

S3 

0.1 
0.1 

0.3 
0.2 

0.6 

(assume unlimited number of marbles) 
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Example 4: Marbles in Jars (con’t) 

•  S1 = event1 = black     
   S2 = event2 = white       A = {aij} =  
   S3 = event3 = grey   

•  what is probability of {grey, white, white, black, black, grey}? 
 Obs. =  {g,  w,  w,  b,  b,  g} 
 S       =  {S3, S2, S2, S1, S1, S3}   
 time  = {1, 2, 3, 4, 5, 6} 

   = P[S3] P[S2|S3] P[S2|S2] P[S1|S2] P[S1|S1] P[S3|S1]  
 

   =  0.33 ·   0.3   ·     0.6   ·    0.2   ·    0.6   ·    0.1 

   =  0.0007128 

60.30.10.
20.60.20.
10.30.60. π1 = 0.33 

π2 = 0.33 
π3 = 0.33 

19 

Example 4A: Marbles in Jars 

Jar 1 Jar 2 Jar 3 
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•  Same data, two different models... 

“lazy” “random” 
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Example 4A: Marbles in Jars 

What is probability of: 
  {w, g, b, b, w} 

given each model (“lazy” and “random”)? 
 

   S  = {S2, S3, S1, S1, S2}   
   time   = {1, 2, 3, 4, 5} 

“lazy”      “random” 
= P[S2] P[S3|S2] P[S1|S3] P[S1|S1] P[S2|S1]    = P[S2] P[S3|S2] P[S1|S3] P[S1|S1] P[S2|S1] 

 
=  0.33 · 0.2 · 0.1 · 0.6 · 0.3        = 0.33 · 0.33 · 0.33 · 0.33 · 0.33 
=  0.001188          = 0.003913 
 
 
 
{w, g, b, b, w} has greater probability if generated by “random.” 
⇒“random” model more likely to generate {w, g, b, b, w}. 
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Notes: 

•  Independence is assumed between events that are separated by 
  more than one time frame, when computing probability of  
  sequence of events (for first-order model). 

•  Given list of observations, we can determine exact state sequence 
  that generated those observations. 
   ⇒ state sequence not hidden. 
 
•  Each state associated with only one event (output). 

•  Computing probability given a set of observations and a model 
   is straightforward. 

•  Given multiple Markov Models and an observation sequence, 
   it's easy to determine the M.M. most likely to have generated 
   the data. 

Agenda 
• HW2 – due Thursday 
• Questions, comments, concerns? 
• Markov Chains 
• Hidden Markov Models (HMMs) 
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Hidden Markov Models 
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•  more than 1 event associated with each state. 

•  all events have some probability of emitting at each state. 

•  given a sequence of observations, we can't determine exactly 
   the state sequence. 

•  We can compute the probabilities of different state sequences 
   given an observation sequence. 

Doubly stochastic (probabilities of both emitting events and 
transitioning between states); exact state sequence is “hidden.” 
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Elements of a Hidden Markov Model: 

•  clock    t = {1, 2, 3, … T} 
 

•  N states    Q = {1, 2, 3, … N} 

•  M events    E = {e1, e2, e3, …, eM} 

•  initial probabilities   πj = P[q1 = j]   1 ≤ j ≤ N 

•  transition probabilities  aij = P[qt = j | qt-1 = i]  1 ≤  i, j  ≤ N 

•  observation probabilities  bj(k)=P[ot = ek | qt = j]  1 ≤ k ≤ M 
    bj(ot)=P[ot = ek | qt = j]  1 ≤ k ≤ M 

•  A = matrix of aij values, B = set of observation probabilities,  
π = vector of πj values. 
 Entire Model:   λ = (A,B,π) 
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Notes: 

•  an HMM still generates observations, 
  each state is still discrete,  
  observations can still come from a finite set (discrete HMMs). 
  
•  the number of items in the set of events does not have to 
  be the same as the number of states.  

•  when in state S,  
 there's p(e1) of generating event 1, 
 there's p(e2) of generating event 2, etc. 

pS2(black) = 0.6 
pS2(white) = 0.4 

S1 S2 0.1 

0.9 0.5 

0.5 
pS1(black) = 0.3 
pS1(white) = 0.7 
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Example 1: Marbles in Jars (lazy person) 

Jar 1 Jar 2 Jar 3 

S1 S2 

0.3 

0.2 

0.6 0.6 

S3 

0.1 

0.1 

0.3 

0.2 

0.6 

(assume unlimited number of marbles) 

p(b) =0.8 
p(w)=0.1 
p(g) =0.1 

p(b) =0.2 
p(w)=0.5 
p(g) =0.3 

p(b) =0.1 
p(w)=0.2 
p(g) =0.7 

State 3 State 2 State 1 

π1=0.33 π2=0.33 π3=0.33 
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Example 1: Marbles in Jars (lazy person) 
  (assume unlimited number of marbles) 

•  With the following observation: 

•  What is probability of this observation, given state sequence  
 {S3  S2  S2  S1  S1  S3} and the model??   

   = b3(g)  b2(w)  b2(w)  b1(b)  b1(b)  b3(g) 
 
   = 0.7 ·0.5 · 0.5 · 0.8 · 0.8 · 0.7 
 
   = 0.0784 

 g    w   w    b    b    g 
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Example 1: Marbles in Jars (lazy person) 
  (assume unlimited number of marbles) 

•  With the same observation: 

  
•  What is probability of this observation, given state sequence  

 {S1  S1  S3  S2  S3  S1} and the model??   

   = b1(g)  b1(w)  b3(w)  b2(b)  b3(b)  b1(g) 
 
   = 0.1 ·0.1 · 0.2 · 0.2 · 0.1 · 0.1 
 
   = 4.0x10-6 

 g    w   w    b    b    g 
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Some math… 
 
With an observation sequence O=(o1 o2 … oT), state sequence 
q=(q1 q2 … qT), and model λ: 
 
Probability of O, given state sequence q and model λ, is: 
 
 
 
assuming independence between observations.  This expands: 

 
    -- or -- 

 
 
The probability of the state sequence q can be written: 
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The probability of both O and q occurring simultaneously is: 
 
 
 
 
which can be expanded to: 
 
 
 

)|(),|()|,( λλλ qqOqO PPP =

)()()()|,(
1322211 211 Tqqqqqqqqqq TTT
baababP oooqO ⋅⋅⋅⋅⋅=

−
…πλ

Independence between aij and bj(ot) is NOT assumed: 
 
 
 
 
this is just multiplication rule: P(A∩B) = P(A | B)  P(B) 

)|(),|()|,( λλλ qqOqO PPP =
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HMM Example 2: Weather and Atmospheric Pressure 
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HMM Example 2: Weather and Atmospheric Pressure 
 
If weather observation O={sun, sun, cloud, rain, cloud, sun} 
what is probability of O, given the model and the sequence 
{H, M, M, L, L, M}? 
 
   = bH(sun) bM(sun) bM(cloud) bL(rain) bL(cloud) bM(sun) 
 
   = 0.8 ·0.3 · 0.4 · 0.6 · 0.3 · 0.3 
 
   = 5.2x10-3 
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HMM Example 2: Weather and Atmospheric Pressure 
 
What is probability of O={sun, sun, cloud, rain, cloud, sun} 
and the sequence {H, M, M, L, L, M}, given the model? 
 
= πH·bH(s) ·aHM·bM(s) ·aMM·bM(c) ·aML·bL(r) ·aLL·bL(c) ·aLM·bM(s) 
 

= 0.4 · 0.8 · 0.3 · 0.3 · 0.2 · 0.4 · 0.5 · 0.6 · 0.3 · 0.3 · 0.6 · 0.3 
 

= 1.12x10-5 

 
What is probability of O={sun, sun, cloud, rain, cloud, sun} 
and the sequence {H, H, M, L, M, H}, given the model? 
 
= πH·bH(s) ·aHH·bH(s) ·aHM·bM(c) ·aML·bL(r) ·aLM·bM(c) ·aMH·bH(s) 
 

= 0.4 · 0.8 · 0.6 · 0.8 · 0.3 · 0.4 · 0.5 · 0.6 · 0.6 · 0.4 · 0.3 · 0.6 
 
= 2.39x10-4 
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Notes about HMMs: 

•  must know all possible states in advance 

•  must know possible state connections in advance  

•  cannot recognize things outside of model 

•  must have some estimate of state emission probabilities 
   and state transition probabilities 

•  make several assumptions (usually so math is easier) 

Agenda 
• HW2 – due Thursday 
• Markov Chains 
• Hidden Markov Models (HMMs) 
•  Forward Algorithm, Viterbi Algorithm (next time) 
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