

Agenda

- HW2 - due today
- Collect printouts
- Questions about the homework to be posted to the class list, or to compling723.fall2011@gmail.com
- Language Modeling with <s>
- Logarithmic Math
- HW3 - online today, due in two weeks
- Forward Algorithm
- Viterbi Algorithm

Log-Domain Mathematics
When multiplying many numbers together, we run the risk of underflow errors... one solution is to transform everything into the log domain

$\log \operatorname{Add}(a, b)$ computes the log-domain sum of a and b when both a and b are already in log domain. In the linear domain:

$$
\begin{aligned}
\log (x+y)= & \log \left(x+\left[\frac{y}{x} \cdot x\right]\right) \\
& \log \left(x\left[1+\frac{y}{x}\right]\right) \\
& \log (x)+\log \left(1+\frac{y}{x}\right) \\
& \log (x)+\log \left(1+\mathrm{e}^{\log (y)-\log (x)}\right)
\end{aligned}
$$

Major point: $\log \operatorname{Add}(x, y)$ is NOT same as $\log (x \times y)=\log (x)+\log (y)$

A little trick with logs...
Recall: $e^{x+y}=e^{x} e^{y}$

$$
\begin{aligned}
\log \left(e^{A}+e^{B}\right) & =\log \left(e^{B+A-B}+e^{B}\right) \\
& =\log \left(e^{B} e^{A-B}+e^{B}\right) \\
& =\log \left(e^{B}\left(e^{A-B}+1\right)\right) \\
& =\log e^{B}+\log \left(e^{A-B}+1\right) \\
& =B+\log \left(e^{A-B}+1\right) \\
& =A+\log \left(e^{B-A}+1\right)
\end{aligned}
$$

Don't want e^{A-B} to be large. Hence, if $A>B$, calculate $A+\log \left(e^{B-A}+1\right)$

HMM Independence

- The probability of an output symbol depends only on the state generating it

$$
P\left(o_{t} \mid q_{1}, q_{2}, \ldots, q_{N}, o_{1}, o_{2}, \ldots, o_{T}\right)=P\left(o_{t} \mid q_{i}\right)
$$

- Where x are the (hidden) states and y are our (observed) events:

HMM Example 2: Weather and Atmospheric Pressure
What is probability of $\mathrm{O}=$ \{sun, sun, cloud, rain, cloud, sun\} and the sequence $\{\mathrm{H}, \mathrm{M}, \mathrm{M}, \mathrm{L}, \mathrm{L}, \mathrm{M}\}$, given the model?
$=\pi_{\mathrm{H}} \cdot b_{\mathrm{H}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{HM}} \cdot b_{\mathrm{M}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{MM}} \cdot b_{\mathrm{M}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{ML}} \cdot b_{\mathrm{L}}(\mathrm{r}) \cdot \mathrm{a}_{\mathrm{LL}} \cdot b_{\mathrm{L}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{LM}} \cdot b_{\mathrm{M}}(\mathrm{s})$
$=0.4 \cdot 0.8 \cdot 0.3 \cdot 0.3 \cdot 0.2 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.3 \cdot 0.3 \cdot 0.6 \cdot 0.3$
$=1.12 \times 10^{-5}$
What is probability of $\mathrm{O}=$ \{sun, sun, cloud, rain, cloud, sun\} and the sequence $\{H, H, M, L, M, H\}$, given the model?

HMMs: Three Problems

- Likelihood: Given an $\operatorname{HMM} \lambda=(A, B, \Pi)$, and a sequence of observed events O, find $P(O \mid \lambda)$
- Decoding: Given an HMM $\lambda=(A, B, \Pi)$, and an observation sequence O, find the most likely (hidden) state sequence
- Learning: Given a set of observation sequences and the set of states Q in λ, compute the parameters A and B
$=\pi_{\mathrm{H}} \cdot b_{\mathrm{H}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{HH}} \cdot b_{\mathrm{H}}(\mathrm{s}) \cdot \mathrm{a}_{\mathrm{HM}} \cdot b_{\mathrm{M}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{ML}} \cdot b_{\mathrm{L}}(\mathrm{r}) \cdot \mathrm{a}_{\mathrm{LM}} \cdot b_{\mathrm{M}}(\mathrm{c}) \cdot \mathrm{a}_{\mathrm{MH}} \cdot b_{\mathrm{H}}(\mathrm{s})$
$=0.4 \cdot 0.8 \cdot 0.6 \cdot 0.8 \cdot 0.3 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.6 \cdot 0.4 \cdot 0.3 \cdot 0.6$
$=2.39 \times 10^{-4}$

Forward Algorithm: Formal Definition

- Initialization

$$
\alpha_{1}(j)=\pi_{j} b_{j}\left(o_{1}\right), 1 \leq j \leq N
$$

- Recursion

$$
\alpha_{t}(j)=\sum_{j=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) ; 1 \leq j \leq N, 2 \leq t \leq T
$$

- Termination

$$
P(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

Computing Likelihood

- Easy, right?
- Sum over all possible ways in which we could generate O from λ

$$
\begin{aligned}
P(O \mid \lambda) & =\sum_{Q} P(O, Q \mid \lambda)=\sum_{Q} P(O \mid Q, \lambda) P(Q \mid \lambda) \\
& =\sum_{q_{1}, q_{2} \ldots q_{T}} \pi_{q_{1}} b_{q_{1}}\left(o_{1}\right) a_{q_{1} q_{2}} \ldots a_{q_{T-1} q_{T}} b_{q_{T}}\left(o_{T}\right)
\end{aligned}
$$

- What's the problem? Takes $O\left(N^{\top}\right)$ time to compute!
- Right idea, wrong algorithm!

Forward Algorithm

- Use an $N \times T$ trellis or chart $\left[\alpha_{t j}\right]$
- Forward probabilities: $\alpha_{t j}$ or $\alpha_{t}(j)$
$\cdot=P$ (being in state j after seeing t observations)
- $=P\left(o_{1}, o_{2}, \ldots o_{t}, q_{t}=j\right)$
- Each cell $=\sum$ extensions of all paths from other cells $\alpha_{t}(j)=\sum_{i} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$
- $\alpha_{t-1}(i)$: forward path probability until ($t-1$)
- $a_{i j}$: transition probability of going from state i to j
- $b_{j}\left(o_{t}\right)$: probability of emitting symbol o_{t} in state j
- $P(O \mid \lambda)=\sum_{i} \alpha_{T}(i)$
-What's the running time of this algorithm?

Decoding
$t: 123456$
$O: \uparrow \downarrow \leftrightarrow \uparrow \downarrow \leftrightarrow$

$\left[\begin{array}{l}P(\uparrow \mid \text { Bear })=0.1 \\ P(\mid \text { Bear })=0.6 \\ P(\mapsto \mid \text { Bear })=0.3\end{array}\right]\left[\begin{array}{l}P(\uparrow \mid \text { Buel })=0.7 \\ P(|\mid \text { Bul })=0.1 \\ P(\leftrightarrow \mid \text { Bul })=0.2\end{array}\right]\left[\begin{array}{l}P(\uparrow \mid \text { Static })=0.3 \\ P(\mid \text { Stati })=0.3 \\ P(\mapsto \mid \text { Static })=0.4\end{array}\right]$
$\lambda_{\text {stock }}$

Given $\lambda_{\text {stock }}$ as our model and O as our observations, what are the most likely states the market went through to produce O ?

Decoding

- "Decoding" because states are hidden
- First try:
- Compute $P(0)$ for all possible state sequences, then choose sequence with highest probability
- What's the problem here?
- Second try:
- For each possible hidden state sequence, compute $P(O)$ using the forward algorithm
-What's the problem here?

Viterbi Algorithm

- Use an $N \times T$ trellis $\left[v_{t i}\right]$
- Just like in forward algorithm
- $v_{t j}$ or $v_{t}(j)$
$\cdot=P$ (in state j after seeing t observations and passing through the most likely state sequence so far)
$\cdot=P\left(q_{1}, q_{2}, \ldots q_{t-1}, q_{t-j} ; o_{1}, o_{2}, \ldots o_{t}\right)$
- Each cell = extension of most likely path from other cells $v_{t}(j)=\max _{i} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$
- $v_{t-1}(i)$: Viterbi probability until ($t-1$)
- $a_{i j}$: transition probability of going from state i to j
- $b_{j}\left(o_{t}\right)$: probability of emitting symbol o_{t} in state j
- $P=\max _{i} v_{T}(i)$

Viterbi Algorithm: Formal Definition

- Initialization
$v_{1}(j)=\pi_{i} b_{i}\left(o_{1}\right) ; 1 \leq i \leq N$
$B T_{1}(i)=0$
- Recursion
$v_{t}(j)={\underset{i=1}{N}}_{\max _{i=1}^{N}}\left[v_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) ; 1 \leq i \leq N, 2 \leq t \leq T \quad$ But here?
$B T_{1}(i)=\arg \max _{i=1}^{N}\left[v_{t-1}(i) a_{i j}\right] \quad$ Why no $b_{j}\left(o_{t}\right)$ here?
- Termination

$$
P^{*}=\stackrel{\substack{\max _{1=1}^{N} \\ 1=1}}{ } v_{T}(j)
$$

$q_{T}^{*}=\underset{\arg \max _{1=i}^{N} v_{T}(j)}{ }$

Viterbi Algorithm

- "Decoding" = computing most likely state sequence - Another dynamic programming algorithm
- Efficient: polynomial vs. exponential (brute force)
- Same idea as the forward algorithm
- Store intermediate computation results in a trellis
- Build new cells from existing cells

Viterbi vs. Forward

- Maximization instead of summation over previous paths
- This algorithm is still missing something!
- In forward algorithm, we only care about the probabilities
- What's different here?
- We need to store the most likely path (transition):
- Use "backpointers" to keep track of most likely transition
- At the end, follow the chain of backpointers to recover the most likely state sequence

Viterbi Algorithm

$$
O=\uparrow \downarrow \uparrow
$$

find most likely state sequence given $\lambda_{\text {stock }}$

Modeling the problem

-What's the problem?

- The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/ NN of/IN other/JJ topics/NNS ./.
- What should the HMM look like ?
- States: part-of-speech tags $\left(t_{1}, t_{2}, \ldots, t_{N}\right)$
- Output symbols: words ($w_{1}, w_{2}, \ldots, w_{\text {In }}$)
- Given HMM $\lambda(\mathrm{A}, \mathrm{B}, \Pi)$, POS tagging $=$ reconstructing the best state sequence given input
- Use Viterbi decoding (best = most likely)
- But wait...

HMMs: Three Problems

- Likelihood: Given an $\operatorname{HMM} \lambda=(A, B, \Pi)$, and a sequence of observed events O , find $P(O \mid \lambda)$
- Decoding: Given an $\operatorname{HMM} \lambda=(A, B, \Pi)$, and an observation sequence O, find the most likely (hidden) state sequence
- Learning: Given a set of observation sequences and the set of states Q in λ, compute the parameters A and B

Supervised Training

- Transition Probabilities
- Any $P\left(t_{i} \mid t_{i-1}\right)=C\left(t_{i-1}, t_{i}\right) / C\left(t_{i-1}\right)$, from the tagged data
- Example: for $\mathrm{P}(\mathrm{NN} \mid \mathrm{VB})$, count how many times a noun follows a verb and divide by the total number of times you see a verb
- Emission Probabilities
- Any $P\left(w_{i} \mid t_{i}\right)=C\left(w_{i}, t_{i}\right) / C\left(t_{i}\right)$, from the tagged data
- For P (bank|NN), count how many times bank is tagged as a noun and divide by how many times anything is tagged as a noun
- Priors
- Any $P\left(q_{1}=t_{i}\right)=\pi_{i}=C\left(t_{i}\right) / N$, from the tagged data
- For $\pi_{N N}$, count the number of times NN occurs and divide by the total number of tags (states)
- A better way?

Agenda

- HW2 - due today
- Collect printouts
- Questions about the homework to be posted to the class list
- HW3 - online today, due in two weeks
- Language Modeling with <s>
- Logarithmic Math
- Forward Algorithm, Viterbi Algorithm
- Next time:
- Unsupervised training 'teaser'
- Other HMM/tagging tasks

