
1

Unix Scripting
A Tutorial for Computational Linguistics

(CSE 506/606)

Kristy Hollingshead

Fall 2009

www.cslu.ogi.edu/~hollingk/CL_tutorial.html

2

Overview

• The goal here is to make your lives easier!

• CL & NLP are very text-intensive

• Simple tools for text-manipulation
– sed

– awk

– python

– bash/tcsh

– sort

• When & how to use each of these tools

2

3

Regular expressions crash course

• [a-z] exactly one lowercase letter

• [a-z]* zero or more lowercase letters

• [a-z]+ one or more lowercase letters

• [a-zA-Z0-9] one lowercase or uppercase letter,
or a digit

• [^(] match anything that is not '('

4

sed: overview

• a stream editor

• WHEN
– "search-and-replace"

– great for using regular expressions to change
something in the text

• HOW
– sed 's/regexp/replacement/g'

• 's/… = substitute
• …/g' = global replace
(otherwise will only replace first occurrence on a line!)

3

5

sed: special characters

• ^ the start of a line…
except at the beginning of a character
set (e.g., [^a-z]), where it
complements the set

• $ the end of a line

• & the text that matched the regexp

• We'll see all of these in examples…

6

sed: (simple) examples
• eg.txt =

The cops saw the robber with the binoculars

• sed 's/robber/thief/g' eg.txt

• The cops saw the thief with the binoculars

• sed 's/^/She said, "/g' eg.txt

• She said, "The cops saw the robber with the binoculars

• sed 's/^/She said, "/g' eg.txt | sed 's/$/"/g'

• She said, "The cops saw the robber with the binoculars"

4

7

sed: syntax examples (from NLP)
• eg2.txt =

(TOP (NP (DT The) (NNS cops)) (VP (VBD saw) (NP (DT the)
(NN robber)) (PP (IN with) (NP (DT the) (NNS binoculars)))))

• "remove the syntactic labels"
hint!: all of (and only) the syntactic labels start with '('

• cat eg2.txt | sed 's/([^]* //g' | sed 's/)//g'

• The cops saw the robber with the binoculars

• "now add explicit start & stop sentence symbols
(<s> and </s>, respectively)"

• cat eg2.txt | sed 's/([^]* //g' | sed 's/)//g' |

• sed 's/^/<s> /g' | sed 's/$/ <\/s>/g'

• <s> The cops saw the robber with the binoculars </s>

8

sed: (more complicated) example
• eg2.txt =

(TOP (NP (DT The) (NNS cops)) (VP (VBD saw) (NP (DT the)
(NN robber)) (PP (IN with) (NP (DT the) (NNS binoculars)))))

• "show just the POS-and-word pairs: e.g., (POS word)"

• cat eg2.txt | sed 's/([^]* [^(]/~&/g' |

• sed 's/[^)~]*~/ /g' |

• sed 's/^ *//g' |

• sed 's/))*/)/g'

• (DT The) (NNS cops) (VBD saw) (DT the) (NN robber) (IN with)
(DT the) (NNS binoculars)

5

9

awk: overview
• a simple programming language specifically designed
for text processing
– somewhat similar in nature to Python & Tcl

• WHEN
– using simple variables (counters, arrays, etc.)

– treating each word in a line individually

• HOW
– awk 'BEGIN {initializations}

/regexp1/ {actions1}

/regexp2/ {actions2}

END {final actions}' file.txt

(blue text indicates optional components)

10

awk: special variables

• NF number of fields in a line

• $ the value of a field variable

• $0 the entire line

• NR current count of input lines

• We'll see all of these in examples…

6

11

awk: useful constructions & examples
• .each word in a line is a 'field'
$1, $2, …, $NF
imagine every line of text as a row in a table; one
word per column. $1 will be the word in the first
column, $2 the next column, and so on up through
$NF (the last word on the line)

• .eg3.txt =
.The cow jumped over the moon

• .awk '{print $2}' eg3.txt

• .cow
• .cat eg3.txt | awk '{$NF="up"; print $0; \

v="hello"; print v;}' –

• .The cow jumped over the up
.hello

12

awk: useful constructions & examples
• eg3.txt =
The cow jumped over the moon

• if statements
– awk '{if ($1 == "he") { print $0; }}' eg3.txt

– (empty)

– awk '{if ($1 ~ "he") { print $0; } else { … }}' eg3.txt

– The cow jumped over the moon

• for loops
– awk '{for (j=1; j <= NF; j++) { print $j }}' eg3.txt

The
cow
jumped
over
the
moon

– what if I only wanted to print every other word
(each on a new line), in reverse order?

– awk '{for (j=NF; j > 0; j-=2) { print $j }}' eg3.txt

7

13

– what if I want continuous numbering?

– awk 'BEGIN {idx=0;} {for (j=1; j <= NF; j++) { \

printf("%d\t%s\n",idx,$j); idx++;}}' eg4.txt

• substrings
– substr(<string>, <start>, <end>)
– awk '{for (j=1; j <= NF; j+=2) { \

printf("%s ",substr($j,1,3))}; print "";}' eg4.txt

– The jum the
And dis awa the

awk: useful constructions & examples
• eg4.txt =

The cow jumped over the moon
And the dish ran away with the spoon

• printf statements
– awk '{for (j=1; j <= NF; j++) { \

printf("%d\t%s\n",j,$j);}}' eg4.txt

1 The
2 cow
3 jumped
4 over
5 the
6 moon
1 And
2 the
…

14

awk: from the homework

4

e43

d33

d32

c21

b11

a10

8

15

awk: from the homework

• Let’s try it!!

16

Python: overview

• a simple scripting language
– somewhat similar in nature to awk & Tcl

• WHEN
– more than simple reg expressions

– more than one-liners

• HOW
– not discussed here…

– …but very easy language to play with

9

17

bash: overview

• shell script

• WHEN
– repetitively applying the same commands to many
different files

– automate common tasks

• HOW
– on the command line

– in a file (type `which bash' to find your location):
#!/usr/bin/bash

<commands…>

18

bash: examples
• for f in *.txt; do

echo $f;

tail –1 $f >> txt.tails;

done

• for ((j=0; j < 4; j++)); do

cat part$j.txt >> parts0-3.txt;

done

• for f in hw1.*; do

mv $f ${f//hw1/hw2};

done

10

19

miscellaneous
• sort

– sort -u file.txt

for a uniquely-sorted list of each line in the file

• split
– cat file.txt | split –l 20 –d fold

divide file.txt into files of 20 lines apiece, using “fold” as the
prefix and with numeric suffixes

• wc
– a counting utility
– wc –[l|c|w] file.txt

counts number of lines, characters, or words in a file

20

Putting it all together!
• .Let's say I'd like to see a numbered list of all the capitalized

words that occurred in a file… but I want the words all in
lowercase.

• for f in part*;

do echo $f;

cat $f | awk 'BEGIN {idx=0} {

for (j=1; j <= NF; j++)

if (substr($j,1,1) ~ "[A-Z]") {

printf("%d\t%s\n", idx, $j);

idx++;

}

}' - | tr [A-Z] [a-z] >
${f//part/out};

echo ${f//part/out};

done

11

21

Putting it all together!
• Now I'd like to see that same list, but only see each word once

(unique).

• hint: you can tell 'sort' which fields to sort on
• e.g., sort +3 –4 will skip the first 3 fields and stop the sort

at the end of field 4; this will then sort on the 4th field.
sort –k 4,4 will do the same thing

• for f in out*; do

cat $f | sort +1 –2 –u > ${f//out/unique};

done

• and if I wanted to re-number the unique lists?
• for f in out*; do

cat $f | sort –k 2,2 –u | awk 'BEGIN {idx=0}

{$1=idx; print $0; idx++}' > ${f//out/unique};

done

22

Resources
• You can always look at the man page for help
on any of these tools!
– i.e.: `man sed', or `man tail'

• My favorite online resources:
– sed: www.grymoire.com/Unix/Sed.html

– awk: www.vectorsite.net/tsawk.html

– bash: www.tldp.org/LDP/abs/html/
(particularly section 9.2 on string manipulation)

• Google it. ☺

• OpenFST tutorial
– www.cslu.ogi.edu/~hollingk/JHU_tutorial.html

12

23

Warning!

• These tools are meant for very simple text-
processing applications!
– Python is the exception…

• Don't abuse them by trying to implement
computationally-intensive programs with them
– like Viterbi search and chart parsing

• Use a more suitable language like
C, C++, (Python), or Java

