
Text Processing &
Data Structures for NLP
A Tutorial (CSE 562/662)

Kristy Hollingshead

Fall 2008

www.cslu.ogi.edu/~hollingk/NLP_tutorial.html

2

regexp Text Processing Overview

• The goal here is to make your lives easier!

• NLP is very text-intensive

• Simple tools for text-manipulation
– sed, awk, bash/tcsh

– split

– sort

– head, tail

• When & how to use each of these tools

3

Regular expressions crash course

• [a-z] exactly one lowercase letter

• [a-z]* zero or more lowercase letters

• [a-z]+ one or more lowercase letters

• [a-zA-Z0-9] one lowercase or uppercase letter,
or a digit

• [^(] match anything that is not '('

4

sed: overview

• a stream editor

• WHEN
– "search-and-replace"

– great for using regular expressions to change
something in the text

• HOW
– sed 's/regexp/replacement/g'

• 's/… = substitute

• …/g' = global replace
(otherwise will only replace first occurrence on a line!)

5

sed: special characters

• ^ the start of a line…
except at the beginning of a character
set (e.g., [^a-z]), where it
complements the set

• $ the end of a line

• & the text that matched the regexp

• We'll see all of these in examples…

6

sed: (simple) examples
• eg.txt =

The cops saw the robber with the binoculars

• sed 's/robber/thief/g' eg.txt

• The cops saw the thief with the binoculars

• sed 's/^/She said, "/g' eg.txt

• She said, "The cops saw the robber with the binoculars

• sed 's/^/She said, "/g' eg.txt | sed 's/$/"/g'

• She said, "The cops saw the robber with the binoculars"

7

awk: overview
• a simple programming language specifically designed
for text processing
– somewhat similar in nature to Tcl

• WHEN
– using simple variables (counters, arrays, etc.)

– treating each word in a line individually

• HOW
– awk 'BEGIN {initializations}

/regexp1/ {actions1}

/regexp2/ {actions2}

END {final actions}' file.txt

(blue text indicates optional components)

8

awk: useful constructions & examples
• .each word in a line is a 'field'

$1, $2, …, $NF

imagine every line of text as a row in a table; one
word per column. $1 will be the word in the first
column, $2 the next column, and so on up through
$NF (the last word on the line)

• .$0 – the entire row

• .eg3.txt =
.The cow jumped over the moon

• .awk '{print $2}' eg3.txt

• .cow
• .cat eg3.txt | awk '{$NF=42; print $0; \

$1="An old brown"; print $0;}' –

• .The cow jumped over the 42
.An old brown cow jumped over the 42

9

awk: useful constructions & examples
• eg3.txt =
The cow jumped over the moon

• if statements
– awk '{if ($1 == "he") { print $0; }}' eg3.txt

– (empty)

– awk '{if ($1 ~ "he") { print $0; } else { … }}' eg3.txt

– The cow jumped over the moon

• for loops
– awk '{for (j=1; j <= NF; j++) { print $j }}' eg3.txt

The
cow
jumped
over
the
moon

– what if I only wanted to print every other word
(each on a new line), in reverse order?

– awk '{for (j=NF; j > 0; j-=2) { print $j }}' eg3.txt

10

– what if I want continuous numbering?

– awk 'BEGIN {idx=0;} {for (j=1; j <= NF; j++) { \

printf("%d\t%s\n",idx,$j); idx++;}}' eg4.txt

awk: useful constructions & examples
• eg4.txt =

The cow jumped over the moon
And the dish ran away with the spoon

• printf statements
– awk '{for (j=1; j <= NF; j++) { \

printf("%d\t%s\n",j,$j);}}' eg4.txt

1 The
2 cow
3 jumped
4 over
5 the
6 moon
1 And
2 the
…

11

• eg4.txt =
The cow jumped over the moon
And the dish ran away with the spoon

• substrings
– substr(<string>, <start>, <end>)

– awk '{for (j=1; j <= NF; j++) { \

printf("%s ",substr($j,1,3))}; print "";}' eg4.txt

– The cow jum ove the moo
And the dis ran awa wit the spo

• strings as arrays
– length(<string>)
– awk '{for (j=1; j <= NF; j++) { \

for (c=1; c <= length($j); c++) { \

printf("%s ",substr($j,c,1))}; \

print "";}}' eg4.txt

awk: useful constructions & examples

T h e
c o w
j u m p e d
o v e r
t h e
m o o n
A n d
t h e
…

12

bash: overview

• shell script

• WHEN
– repetitively applying the same commands to many
different files

– automate common tasks

• HOW
– on the command line

– in a file (type `which bash' to find your location):
#!/usr/bin/bash

<commands…>

13

bash: examples
• for f in *.txt; do

echo $f;

tail –1 $f >> txt.tails;

done

• for ((j=0; j < 4; j++)); do

cat part$j.txt >> parts0-3.txt;

done

• for f in hw1.*; do

mv $f ${f//hw1/hw2};

done

14

miscellaneous
• sort

– sort -u file.txt

for a uniquely-sorted list of each line in the file

• split
– cat file.txt | split –l 20 –d fold

divide file.txt into files of 20 lines apiece, using “fold” as the
prefix and with numeric suffixes

• wc
– a counting utility
– wc –[l|c|w] file.txt

counts number of lines, characters, or words in a file

15

miscellaneous
• head, tail

– viewing a small subset of a file

– head -42 file.txt

for the first 42 lines of file.txt

– tail -42 file.txt

for the last 42 lines of file.txt

– tail +42 file.txt

for everything except the first 42 lines of file.txt

– head -42 file.txt | tail -1

to see the 42nd line of file.txt

• tr
– "translation" utility

– cat mixed.txt | tr [a-z] [A-Z] > upper.txt

16

Putting it all together!
• .Let's say I have a text file, and I'd like to break it up

into 4 equally-sized (by number of lines) files.
• .wc -l orig.txt

8000

• the easy way:
• cat orig.txt | split –d –l 2000 –a 1 - part;

for f in part*; do mv $f $f.txt; done

• the hard way:
• head –2000 orig.txt > part0.txt

• tail +2001 orig.txt | head –2000 > part1.txt

• tail +4001 orig.txt | head –2000 > part2.txt

• tail -2000 orig.txt > part3.txt

17

Putting it all together!
• .Now for each of those files, I'd like to see a

numbered list of all the capitalized words that
occurred in each file… but I want the words all
in lowercase.

• for f in part*;

do echo $f;

cat $f | awk 'BEGIN {idx=0} {

for (j=1; j <= NF; j++)

if (substr($j,1,1) ~ "[A-Z]") {

printf("%d\t%s\n", idx, $j);

idx++;

}

}' - | tr [A-Z] [a-z] >
${f//part/out};

echo ${f//part/out};

done

18

Putting it all together!
• Now I'd like to see that same list, but only see each word once

(unique).

• hint: you can tell 'sort' which fields to sort on
• e.g., sort +3 –4 will skip the first 3 fields and stop the sort

at the end of field 4; this will then sort on the 4th field.
sort –k 4,4 will do the same thing

• for f in out*; do

cat $f | sort +1 –2 –u > ${f//out/unique};

done

• and if I wanted to re-number the unique lists?
• for f in out*; do

cat $f | sort –k 2,2 –u | awk 'BEGIN {idx=0}

{$1=idx; print $0; idx++}' > ${f//out/unique};

done

19

Resources

• You can always look at the man page for help
on any of these tools!
– i.e.: `man sed', or `man tail'

• My favorite online resources:
– sed: www.grymoire.com/Unix/Sed.html

– awk: www.vectorsite.net/tsawk.html

– bash: www.tldp.org/LDP/abs/html/
(particularly section 9.2 on string manipulation)

• Google it. ☺

20

Warning!

• These tools are meant for very simple text-
processing applications!

• Don't abuse them by trying to implement
computationally-intensive programs with them
– like Viterbi search and chart parsing

• Use a more suitable language like
C, C++, or Java … as shown next!

Data Structures for NLP

24

Disclaimers
• Your coding experience

– Tutorial intended for beginners up to experts

• C/C++/Java
– Examples will be provided in C

– Easily extended to C++ classes

– Can also use Java classes, though will be slower—maybe
prohibitively so

• compiling C
– gcc -Wall foo.c -o foo

– -g to debug with gdb

25

Data Structures Overview
• Storage

– Lists

– Trees

– Pairs (frequency counts)

– Memory allocation

• Search
– Efficiency

• Hash tables

– Repetition

• Code
– http://www.cslu.ogi.edu/~hollingk/code/nlp.c

26

Linked Lists (intro)
• for each list:

– first/head node

– last/tail node (opt)

• for each node:
– next node

– previous node (opt)

– data

• vs arrays

struct node;

typedef struct node Node;

typedef struct list {

Node *head;

Node *tail;

} List;

struct node {

char *label;

Node *next;

Node *prev

};

27

Linked Lists (NLP)
• example: POS sequence

(RB Here) (VBZ is) (DT an) (NN example)

• reading in from text (pseudo-code):

read_nodes {

while curr_char != '\n' {

if (curr_char=='(') {

prevnode=node; node=new_node();

node->prev=prevnode;

if (prevnode!=NULL) prevnode->next=node; }

node->pos=read_until(curr_char,' ');

curr_char++; // skip ' '

node->word=read_until(curr_char,')');

curr_char++; // skip ')'

}

28

Pairs / Frequency Counts
• Examples

– What POS tags occurred
before this POS tag?

– What POS tags occurred
with this word?

– What RHS's have
occurred with this LHS?

• Lists
– linear search—
only for short lists!

• Counts
– parallel array

– or create a 'Pair'
data structure!

struct pos {

char *label;

int numprev;

struct pos **bitags; }

struct word {

char *label;

int numtags;

struct pos **tags; }

struct rule {

char *lhs;

int numrhs;

struct rhs **rhss; }

struct rhs {

int len;

char **labels; }

29

Trees (intro)
• for each tree:

– root node

– next tree (opt)

• for each node:
– parent node

– children node(s)

– data

struct tree;

typedef struct tree Tree;

struct node;

typedef struct node Node;

struct tree {

Node* root;

Tree* next;

};

struct node {

char* label;

Node* parent;

int num_children;

Node* children[];

};

30

Trees (NLP)
• Examples:

– parse trees
(SINV (ADVP (RB Here)) (VP (VBZ is))
(NP (DT a) (JJR longer) (NN example)) (. .))

– grammar productions
NP => DT JJR NN

• reading in from text (pseudo-code):
read_trees {

if (curr_char=='(') {

node=new_node(); node->lbl=read_until(curr_char,' '); }

if (next_char!='(') node->word=read_until(curr_char,')');

if (next_char==')') return node; // "pop"

else node->child=read_trees(); // recurse

}

31

Manipulate (text) trees with sed
• eg2.txt =

(TOP (NP (DT The) (NNS cops)) (VP (VBD saw) (NP (DT the)
(NN robber)) (PP (IN with) (NP (DT the) (NNS binoculars)))))

• "remove the syntactic labels"
hint!: all of (and only) the syntactic labels start with '('

• cat eg2.txt | sed 's/([^]* //g' | sed 's/)//g'

• The cops saw the robber with the binoculars

• "now add explicit start & stop sentence symbols
(<s> and </s>, respectively)"

• cat eg2.txt | sed 's/([^]* //g' | sed 's/)//g' |

• sed 's/^/<s> /g' | sed 's/$/ <\/s>/g'

• <s> The cops saw the robber with the binoculars </s>

32

Extract POS-tagged words with sed
• eg2.txt =

(TOP (NP (DT The) (NNS cops)) (VP (VBD saw) (NP (DT the)
(NN robber)) (PP (IN with) (NP (DT the) (NNS binoculars)))))

• "show just the POS-and-word pairs: e.g., (POS word)"

• cat eg2.txt | sed 's/([^]* [^(]/~&/g' |

• sed 's/[^)~]*~/ /g' |

• sed 's/^ *//g' |

• sed 's/))*/)/g'

• (DT The) (NNS cops) (VBD saw) (DT the) (NN robber) (IN with)
(DT the) (NNS binoculars)

33

Manipulate (text) trees with awk
• eg2.txt =

(TOP (NP (DT The) (NNS cops)) (VP (VBD saw) (NP (DT the)
(NN robber)) (PP (IN with) (NP (DT the) (NNS binoculars)))))

• "show just the POS-and-word pairs: e.g., (POS word)“
• cat eg2.txt | awk '{for (j=1;j<=NF;j++) {

• # if $j is a word, print it (without its trailing paren's)
• if (substr($j,1,1) != "(") {

i=index($j,")"); printf("%s ",substr($j,1,i))}

• # if $j is a POS label, print it

• else {if (j+1<=NF &&

substr($(j+1),1,1) != "(") printf("%s ",$j)}}

• print ""}'

• (DT The) (NNS cops) (VBD saw) (DT the) (NN robber)
(IN with) (DT the) (NNS binoculars)

34

Lists in Trees (NLP)
• navigation in trees

• convenient to link to
"siblings"

– right sibling ≈ next node

– left sibling ≈ previous node

• convenient to "grow"
children

– children ≈
first child + right siblings

35

Memory allocation
• allocation

– multi-dimensional
arrays (up to 3 dim)

• initialization
– malloc vs calloc

• re-allocation
– realloc, re-initialize

• pointers
– minimize wasted space
given sparse data sets

• de-referencing
int *i;

i[0] ≈ (*i)

int **dim2;

dim2=

malloc(10*sizeof(int));

for (i=0;i<10;i++)

dim2[i]=

malloc(20*sizeof(int));

dim2[1][0]=42;

int *dim1;

dim1=malloc(

10*20*sizeof(int));

dim1[(1*20)+1]=42;

36

Overview

• Storage
– Lists

– Trees

– Pairs (frequency counts)

– Memory allocation

• Search
– Efficiency

• Hash tables

– Repetition

• Code

37

Efficiency

• Huge data sets (productions, tags, features)
– Efficient data structures

• structs/classes (vs parallel arrays)

• hash tables (vs binary sort, qsort, etc.)

• Repetitive, systematic searching
– Search once, then remember

• Brute force just won't work…

38

Hash Tables (intro)
• Supports efficient

look-up (O(1) on avg)

• Maps a key (e.g., node label)
into a hash code

• Hash code indexes into an
array, to find the "bucket"
containing desired object
(e.g., node)

• Collisions

– Multiple keys (labels)
mapping to the same
"bucket"

– Chained hashing

– Open addressing

‡

39

Chained Hash Table (NLP)
• Data structures
to be stored
– POS data

– dictionary entries

– grammar productions

• look-up by label
(pseudo-code):

typedef struct value {

char* key;

int idx;

} Value;

typedef struct hash {

struct value* v;

struct hash* next;

} Hash;

Value* get_value(char* key) {

int code=get_hash_code(key);

Value* entry=hash_table[code];

while (entry && entry->v->key!=key) entry=entry->next;

if (!entry) make_new_entry(key);

return entry;

}

40

Repetitious search
• Very repetitive searches in NLP

• Avoid multiple look-ups for the same thing
– Save a pointer to it

– Store in a temporary data structure

• Look for patterns
– Skip as soon as you find a (partial) mismatch

• Make faster comparisons first
– (int i == int j) before strcmp(s1,s2)

• Make "more unique" comparisons first

– Look for ways to partition the data,
save a pointer to each partition
• Left-factored grammar example

41

Remember…

• Use data structures (structs/classes)

• Allocate memory sparingly

• Efficiency of search is vital
– Use hash tables

– Store pointers

• Don't rely on brute force methods

